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Statistics serves as the foundation for various domains such as businesses, policy makers, markets and 
other sectors involved in activities such as data collection, planning, design, analysis, interpretation and 

reporting of the research ndings. Moreover, the ndings obtained from a research project carry greater signicance when 
subjected to analysis using statistical techniques. Various methods are employed to ensure precise data interpretation within 
the realm of research. Considering the data parameters, we have two methodologies – Parametric tests and Nonparametric 
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for analysing continuous data in any format. This article provides an explanation of a range of Parametric and Nonparametric 
tests along with R code. 
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Statistics

INTRODUCTION
The subject Statistics is widely used in almost all elds like 
Education, commerce, Biology, Botany, Medicine, Bio-
Technology, Psychology, Zoology, etc. While doing research in 
the above elds, the researchers should have some 
knowledge in using the statistical tools which helps them in 
drawing rigorous and good conclusions. For every hypothesis 
testing problem, it requires a test which may be Parametric or 
Nonparametric test. Statistical methods typically centre on 
population parameters or probabil i ty distr ibution 
characteristics, and these are commonly known as parametric 
methods. Nonparametric methods are those statistical 
techniques that necessitate fewer assumption regarding a 
population or probability distribution. 

Parametric tests are characterized by their assumption that 
the sample data originates from a population adhering to a 
particular probability distribution, namely the normal 
distribution, with a predetermined set of parameters. 
Prominent examples of parametric tests comprise the z-test, t-
test and ANOVA.

Parametric test 
Parametric tests exhibit signicant statistical power. These 
tests are suitable for quantitative data measured on a metric 
scale (interval or ratio) and conforming to normal distribution 
with a mean μ and standard deviation σ.  

Below is the list of fundamental parametric tests that can be 
conducted. 
Ÿ One-sample Z – test
Ÿ Independent - samples Z – test
Ÿ One sample t – test
Ÿ Independent – samples t-test
Ÿ Paired – sample t – test
Ÿ F – test
Ÿ One – way ANOVA
Ÿ Bartlett test

One-sample Z - test:
The Z-test is a hypothesis test employed to evaluate the mean 
of a sample against a predened value. It is used when the 
standard deviation of the distribution is known and the sample 
size is typically large (usually 30 and above). 

Assumptions:
The population data is continuous, and it adheres to a normal 
distribution with known population mean and standard 
deviation. Samples must be both independent of each other 

and randomly drawn from the population. 

Consider a sample size n drawn from a population with mean 
μ and standard deviation , then the test statistic to test sample 
mean is given by

R code for one-sample Z-test: 
A researcher wants to ascertain if the mean student score is 61 
in the exam or not. The researcher collected the data of 30 
students by using random samples and got following data:
67, 73, 54, 67, 48, 80, 69, 56, 59, 62, 70, 66, 64, 71, 65, 49, 80, 60, 
56, 70, 68, 55, 58, 70, 70, 69, 52, 65, 66, 79. The S.D of student 
score is 10.

The scores are distributed in accordance with normal 
distribution. The test is conducted  at 5% level of signicance.

H : Average score of students is 61, μ= 61.0

H : Average score of students is not 61, μ≠ 61.1

R code 
>dataset<-c(67,73,54,67,48,80,69,56,59,62,70,66,64,71,  
65,49,80,60,56,70,68,55,58,70,70,69,52,65,66,79)

>z.test (dataset, mu = 61,sd = 10, sigma.x = 8.3849, 
alternative = "two.sided", conf.level = 0.95)

One sample Z-test results:
z = 1.9718, 
p-value = 0.04863

The test statistic for one sample Z – test is 1.9718 and the 
corresponding p – value is 0.04863. since this p – value is less 
than 0.05, The researcher has the sufcient evidence to reject 
the null hypothesis. Thus, the conclusion is that the average 
score of students is not 61 in the exam. 

Independent-samples Z - test: 
A parametric test called the two-sample test is used to 
compare the means of two separate groups of samples taken 
from normally distributed populations. In simpler terms, it 
helps to determine whether the means of two populations are 
identical or distinct.

Assumptions:
The population data is continuous and conforms to normal 
distribution. The population's standard deviation is known, 
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and there is uniform variability among the groups, indicating 
homogeneity of variance. Moreover, both samples should be 
randomly drawn from the population.

Consider a sample of size n and n  drawn from the population 1 2

with sample means (x  )and (x  ) and the population variances 1 2
2 2σ   and σ  of the rst and second group respectively, then to 1 2

compare means of two different samples the test statistic is 
given by

R-code for Independent sample Z-test:
A professor desires to determine if there is a difference in mean 
IQ level of boys and girls in the class with 5% level of 
signicance. She selects two random samples of girls and 
boys each of size 40. The population standard deviations of 
girls and boys are 25. The samples are as follows:

Girls: 
99,128,89107,99,104,119,112,105,93,84,91,113,129,100,105,94,
115,114,106,113,116,116,131,117,123,134,128,112,101,105,89,
101,118,124,72,104,119,145,133.

Boys:
79,118,99,117,98,102,112,111,102,73,114,97,114,122,90,115,84
,105,84,105,84,126,83,96,111,151,147,103,104,118,132,108,95,
118,121,88,94,109,105,123.

H : μ = μ  , IQ of girls and boys are equal.0 1 2

H : μ  ≠ μ , IQ of girls and boys are not equal.1 1 2

R code: 
>boys_dataset = c( 79,118,99,117,98,102, 112,111, 102,73, 
114,97,114,122,90,115,84,105,84,126,83,96,111,151,147,103,10
4,118,132,108,95,118,121,88,94,92,94,109,105,123)

>gir ls_dataset  = c(99,128,89,107,99,104,119,112, 
105,93,84,91,113,129,100,105,94,115,114,106,

113,116,116,131,117,123,134,128,112,101,105,89,101,118,124,
72,104,119,145,133)

>z.test(x=boys_dataset, y=girls_dataset, alternative = 
"two.sided", mu = 0, sigma.x = 25, sigma.y = 25, conf.level = 
0.95)

Two-sample z-test result:
z = -0.68424, p-value = 0.4938
The test statistic for independent sample Z – test is -0.6842 and 
the corresponding p – value is 0.4938. since this p – value is 
greater than 0.05, The professor has the sufcient evidence to 
accept the null hypothesis. Thus, the conclusion is that the IQ 
of boys and girls are equal.

One-sample t-test: 
When the sample size falls below 30, it qualies as a small 
sample. The One-sample t-test is a statistical hypothesis test 
employed to assess the mean of a small sample extracted from 
a population in comparison to a specied value.

Assumptions:
Data is continuous and quantitative at the scale level (ratio or 
interval), should follow normal probability distribution. The 
samples should be chosen at random from the population and 
must exhibit independence from one another.

When assessing whether the mean of a sample(x )  drawn n

from a normal population signicantly differs from the stated 
value (hypothetical value of the population mean µ ), and the 0

variance of the population is unknown, the test statistic is as 

follows:

R-code for one-sample t-test:
Using eld experiments, it was anticipated that a new variety 
of green gram would yield 12 quintals per hectare. In order to 
verify whether the actual yield conrms the expectations, the 
variety was tested on 10 randomly selected farmers eld. The 
yield (quintals/hectare) was recorded as
14.3, 12.6, 13.7, 10.9, 13.7, 12, 11.4, 12, 12.6, 13.1

Do the results conform the expectations.
H : μ = 12, The average yield of new variety of green gram is 12 0 1

quintals/hectare.
H : μ ≠ 12,  The average yield is not 12 quintals/hectare.1 1

R code 
>greengram_dataset<-c(14.3,12.6,13.7,  10.9,13.7, 
12,11.4,12,12.6,13.1)
>set.seed(123)
>greengram_dataset<- rnorm (10, mean = 12.63, sd = 
1.02961)
>t.test (greengram_dataset, mu = 12)

One Sample t-test result:
t = 2.2761, p-value = 0.04887
The test statistic for t – test is 2.2761 and the corresponding p – 
value is 0.04887. since this p – value is greater than 0.05, The 
researcher has sufcient evidence to accept the null 
hypothesis. Thus, the conclusion is that the average yield of the 
new variety of green gram is 12 quintal/hectare.

Independent-samples t-test: 
A two sample tests, often referred to as an independent t-test, is 
employed to assess the disparity between the means of two 
unknown populations. This test is applied when two distinct 
populations are sampled, and their means are compared 
using small sample sizes.

Assumptions:
The samples should be chosen randomly from the two 
separate populations, and both samples should have a 
normal distribution with independence between them. 
Additionally, each sample sizes must be less than 30.

When examining whether the samples originate from the 
common normal population, we work with two separate, 
independent random samples. These samples have sizes 
n and n  with means x  and x  and standard deviations s  and 1 2 1 2 1

s , in testing the hypothesis that the samples come from the 2

same normal population.

To compare the means of two different samples the test 
statistic is given by

R-code for Independent sample t-test:
To evaluate the efcacy of medicines A and B, a group of 5 
patients were treated with medicine A. Their weights were 
42,39,38,60,41 kgs. Second group of 7 patients from the same 
hospital were treated with medicine B. Their weights were 
38,42,56,64,68,69,62 kgs. 

H : μ = μ ,  There is no signicant difference in the outcomes 0 1 2

between the medicines A and B. 

H : μ ≠μ , There is signicant difference in the outcomes 1 1 2

between the medicines A and B.

R code 
> medicineA_dataset<-  c(42,39,38,60,41)
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> medicineB_dataset<-  c(38,42,56,64,68,69,62)> 
t.test(medicineA_dataset,medicineB_dataset, var.equal = 
TRUE, alternative = "two.sided")

Two Sample t-test result:
t = -1.981, p-value = 0.07574
The test statistic for t – test is -1.981 and the corresponding p – 
value is 0.0757. since this p – value is greater than 0.05, the 
researcher have the sufcient evidence to accept the null 
hypothesis. Thus, the conclusion is that there is no signicant 
difference between the medicines A and B in terms of efcacy.

Paired-sample t-test:
A paired t-test is a statistical technique used to assess whether 
there is a notable distinction between two related groups by 
examining their means and standard deviations. Essentially, it 
evaluates whether the average difference between paired 
measurements is statistically signicant from zero.

Assumptions:
Paired samples t-test can have only two groups (Use ANOVA 
for more than two measures) and assumes no extreme outliers. 
The dependent variable must be quantitative and is 
continuous measure at the interval or ratio. For accurate 
analysis, it is essential that the sampling distribution of the 
dependent variable exhibits a normal distribution. 

When dealing with paired observations, such as a 
measurement taken before being matched with a 
measurement taken after, the objective is to compare the 
means of two distinct samples. The test statistic is given by

d - sample mean of the differences
s  - sample standard deviation of the differencesd

n - sample size 

R-code for paired sample t-test:
20 mice received a treatment X during 3 months. The 
researcher wants to know whether the treatment X has an 
impact on the weight of the mice. The weights have been 
measured before and after the treatment. The weights are as 
follows:
Before: 200.1, 190.9, 192.7, 213, 241.4, 196.9, 172.2, 185.5, 205.2, 
193.7.

After:  392.9, 393.2, 345.1, 393, 434, 427.9, 422, 383.9, 392.3, 
352.2.

H : μ  = μ ,  There is no difference in weights of mice before and 0 1 2

after treatment.
H : μ ≠ μ , There is difference in weights of mice before and 1 1 2

after treatment.

R code :
 >before <-c(200.1, 190.9, 192.7, 213, 241.4, 196.9, 172.2, 185.5, 
205.2, 193.7)
>after <-c(392.9, 393.2, 345.1, 393, 434, 427.9, 422, 383.9, 
392.3, 352.2)
>t.test(before, after,  paired = TRUE )

Paired t-test result:
t = -20.883, p-value = 6.2e-09
The test statistic for t – test is -20.883 and the corresponding p – 
value is 6.2e-09. since this p – value is less than 0.05. The 
researcher has the sufcient evidence to reject the null 
hypothesis. Thus, the conclusion is that there is difference in 
weights of mice before and after treatment.

F-test:
The F test is utilised to assess whether two distinct samples 

have varying variances, examining the hypothesis that they 
are drawn from populations with different variances. The 
value of the F-test is determined by the ratio of the variances in 
two samples. 

Assumptions:
Both the populations are independent and exhibit a normal 
distribution in relation to each other. 
The test statistic is given by 

R-code for F-test:
A scientist wants to test the weight progress on pigs by giving a 
different diet on different randomly selected pigs. For that, a 
random sample of 10 pigs were fed on diet A. The increase in 
weight in pound in certain period were,
10,6,16,17,13,12,8,14,15,9

For another random sample of 12 pigs fed on diet B, the 
increase in weight in pounds in the same period were,
7,13,22,15,12,14,18,8,21,23,10,17

To test whether both the samples come from the population 
having same variance.

2 2H : σ  = σ  , Both the samples come from the same population 0 1 2

having the same variance.
2 2H : σ ≠ σ , Both the samples does not come from the same 1 1 2

population having the same variance.

R code:
>Diet_A <- c(10,6,16,17,13,12,8,14,15,9)
>Diet_B <- c(7,13,22,15,12,14,18,8,21,23,10,17)
>var.test(Diet_B,Diet_A)

F test to compare two variances result:
F = 2.1409, p-value =
0.2629
The test statistic for F – test is 2.1409 and the corresponding p – 
value is 0.2629. since this p – value is greater than 0.05, The 
scientist has the sufcient evidence to accept the null 
hypothesis. Thus, the conclusion is that both the samples come 
from same population having the same variance.

One-way ANOVA:
ANOVA is a statistical test employed to assess whether 
samples drawn from various populations share the same 
mean or if there is a signicant difference in the population 
means.

Assumptions:
Every sample should be derived from a population that follows 
a normal distribution, and it should also be independent of the 
other samples, Additionally, the variance of the data in 
different groups should be consistent or equal.

The test statistic is given by 
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R-code for one-way ANOVA:
The following are the yield of paddy(quintals) with three 
treatments in ve different plots. A researcher wants to test 
whether there is signicant difference between the three 
groups of  yield obtained.

H : There is no signicant difference between three groups.0

H : There is signicant difference between the three groups.1

R code:
group1<- c(2,3,7,2,6)
group2<- c(10,8,7,5,10)
group3<- c(10,13,14,13,15)

combined_groups<-data.frame (cbind(group1, group2, 
group3))
stacked_groups<-stack(combined_groups)
Anova_Results <- aov(values ~ ind, data = stacked_groups)

One-way ANOVA-Results:
                 Df           Sum Sq    Mean Sq    F value     Pr(>F)    
ind              2           203.3      101.7           22.59     8.54e-05 ***
Residuals   12          54.0       4.5              ---
F(2,12) = 22.59, p value is less than 0.05. Thus, the researcher 
conclude that the null hypothesis is rejected. There is 
signicant difference between the yield of paddy in the three 
groups.

Bartlett test:
This is often referred to as the homogeneity of variance test, 
which examines homoscedasticity or the equality of variances 
among multiple samples originating from different 
populations. Several statistical methods rely on the 
assumption that these population variances are Uniform. 
Bartlett’s test is a tool used to evaluate this assumption by 
testing the null hypothesis that the variances of the 
populations are equal. 

To assess the importance of variance differences among k 
normally distributed populations, independent samples are 
collected from each of these populations. We denote S_2j as 
the variance of a sample containing n_j items from the jth 
population (j = 1,2,3……k).

The test statistic is 

This test statistic follows Chi-Square distribution with k-1 
degrees of freedom. 

R-code for Bartlett test:
A professor intends to investigate whether three distinct study 
methods result in varying exam scores. To do this, the 
professor randomly allocates 10 students to each of the 
techniques (A, B, or C) for one week and subsequently 
administers an exam of equivalent difculty to all the students. 

The exam scores of 30 students are:
81, 86, 88, 75, 78, 94, 98, 79, 71, 80, 96, 93, 93, 85, 87, 84, 72, 88, 
97, 96, 74, 88, 84, 94, 99, 95, 83, 88, 85, 81.

H : Three groups have no different variances.0

H : Three groups have different variances.1

R code:

>df <-data.frame(group = rep(c('A','B', 'C'), each=10),
score = c(81, 86, 88, 75, 78, 94, 98, 79, 71, 80, 96, 93, 93, 85, 87, 
84, 72, 88, 97, 96, 74, 88, 84, 94, 99, 95, 83, 88, 85, 81))
>bartlett.test(score ~ group, data = df)

Bartlett test of homogeneity of variances result:
2Bartlett's Chi-squared ( χ ) = 0.16336, p-value = 0.9216

Since the p-value is not less than 0.05, the professor will not 
reject the null hypothesis.

The professor does not have sufcient evidence to say that the 
three groups have different variances.

Non-Parametric tests:
Non-parametric tests are statistical analysis techniques that 
do not demand adherence to specic distribution 
assumptions, particularly when dealing with non-normally 
distributed data. It is important to note that the term “non-
parametric” does not imply the absence of parameters in these 
models. In reality, the nature and quantity of parameters are 
quite adaptable and not predetermined. Hence, these models 
are often referred to as distribution-free models. 

Assumptions:
Non parametric tests are utilised when either of the sample 
lacks a normal distribution and when the sample size is small. 
These tests are suitable for variables measured on a nominal 
or ordinal scale.

The basic Non parametric tests that can be carried out are 
listed below:
Ÿ Mann – Whitney U test
Ÿ Wilcoxon Signed Rank test
Ÿ Kruskal – Wallis test
Ÿ Friedman test
Ÿ Chi – square test

Mann-Whitney U test:
This non-parametric test is similar to independent sample t-
tests. To perform this test, the dataset must consist of ordinal 
data and is also commonly referred to as the Wilcoxon rank 
sum test. The test statistic is U should be smaller of U and U1 2

Where R  is the sum of ranks in group1 and R  is the sum of 1 2

ranks in group2

Mann-Whitney U test is used for every eld, but it is frequently 
in psychology, healthcare, nursing, business, and other 
disciplines. 

R-code for Mann-Whitney U test:
Researchers want to know whether or not a new drug is 
effective at preventing panic attacks. To test this a total of 12 
patients are randomly split into two groups of 6 and assigned 
to receive the new drug or the placebo. The patients then 
record how many panic attacks they have over the course of 
one month. The results are shown below:
New drug: 8 5 7 4 3 5
Placebo:  4 9 3 2 1 9

Mann-Whitney U test was conducted to determine if there is a 
difference in the number of panic attacks for the patients in the 
placebo group compared to the new group. At 0.05 level of 
signicance.

H : The panic attacks experienced by patients in the placebo 0

group is not different from  the new drug group.
H The panic attacks experienced by patients in the placebo 1: 
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group is different from the new drug group.

R code:
>new <- c(8, 5, 7, 4, 3, 5)
placebo <- c(4, 9, 3, 2, 1, 9)
>wilcox.test(new, placebo, alternative="less")

Wilcoxon rank sum test result:
W = 22, p-value = 0.766
The test statistic W is 22 and the corresponding p – value is 
0.766. since this p – value is greater than 0.05, The researcher 
has the sufcient evidence to accept the null hypothesis. Thus, 
the researcher concluded that the number of panic attacks 
experienced by patients in the new drug was less than that of 
the patients in the Placebo group.

Wilcoxon Signed Rank test:
This is the non-parametric test, which can be considered the 
equivalent of the parametric paired t-test. It is applied to 
compare two dependent samples containing ordinal data. The 
Wilcoxon signed-rank test operates under the assumption that 
the data is derived from a symmetric distribution. 

W – test statistic
Nr - sample size excluding pairs where x = x1 2

x ,i), x i )- corresponding ranked pairs from two distributions2 1

Ri - rank i

R-code for Wilcoxon Signed Rank test:
A throwball coach is interested in determining whether a 
specic training program enhances the number of successful 
free throws made by their players wants to know if a certain 
training program increases the number of free throws made by 
his players. To test this, he has 15 players shoot 20 free throws 
each before and after the training program.

Before: 13,18,13,16,15,9,12,14,14,16,20,17,14,14,16
After: 16,18,15,15,18,15,10,14,11,16,18,20,20,11,17
Wilcoxon signed rank test was conducted to determine 
whether there is an improvement in throws after training.

H : There is no signicant difference in the number of free 0

throws before and after players participate in the training 
program.

H : There is increase in number of free throws of the players 1

after the training program.

R code for Wilcoxon signed Rank test:
>before <- c(13, 18, 13, 16, 15, 9, 12, 14, 14, 16, 20, 17, 14, 14, 16)
>after <- c(16, 18, 15, 15, 18, 15, 10, 14, 11, 16, 18, 20, 20, 11, 17)
>wilcox.test(before, after, paired=TRUE, alternative 
="greater")

Wilcoxon signed rank test result:
V = 25.5, p-value = 0.8664
The test statistic value, V is 25.5 and the p value is 0.8664. Since 
p value is greater than 0.05,   The coach has the sufcient 
evidence to accept the null hypothesis. 

Thus, the coach concluded that, there is no signicant 
difference in the number of free throws before and after 
players participate in the training program.

Kruskal-Wallis test:
This is a rank-based nonparametric test, making it suitable as 
a versatile option for comparing more than two independent 
samples. Its utility lies in assessing whether these samples 
originate from a common distribution, rendering it a robust 
alternative to one-way analysis of variance. 

N – Total no of observations in all observations combined.
k - No of samples.
R  - Sum of ranks for ith sample.i

n - No of observationsi 

R-code for Kruskal-Wallis test:
A researcher aims to investigate whether three distinct 
fertilizers yield varying levels of plant growth. To explore this, 
they employ a random selection of 30 different plants, dividing 
them into three groups of 10, with each group receiving a 
different fertilizer. After one month, they measure the height of 
each plant. A Kruskal-Wallis test was employed to ascertain 
whether the median growth across the three groups is 
equivalent. The heights are given below:
9, 14, 16, 13, 12, 9, 6, 14, 12, 9, 15, 18, 13, 15, 15, 18, 9, 14, 10, 8, 6, 
8, 10, 9, 5, 14, 13, 9, 10, 9

H : The median is equal across all groups.0

H : The median is not equal across all groups.1

R code:
>df <- data.frame(group=rep(c('A', 'B', 'C'), each=10),
height=c(9, 14, 16, 13, 12, 9, 6, 14, 12, 9, 15, 18, 13, 15, 15, 18, 9, 
14, 10, 8, 6, 8, 10, 9, 5, 14, 13, 9, 10, 9))
>kruskal.test(height ~ group, data = df)

Kruskal-Wallis rank sum test result:
2Kruskal-Wallis chi-squared ( χ ) = 6.7706, p-value = 0.03387

The test statistic value is 6.7706 and the p value is 0.03387. 
Since p value is less than 0.05, the researcher has the sufcient 
evidence to reject the null hypothesis. The conclusion is that, 
the type of fertilizer used leads to statistically signicant 
differences in plant growth. The median plant growth is not the 
same for all three fertilizers.

Friedman test:
Fredman’s test is also called Friedman’s two-way ANOVA, 
shares similarities with the Kruskal-Wallis test and can be 
considered an extension of the sign test. Unlike traditional 
repeated measures ANOVA, the Friedman test offers an 
alternative approach. It operates by utilizing ranked data, 
rather than raw data, in the calculation of the test statistic. This 
non-parametric test is particularly useful for comparing three 
or more dependent samples. It is most applicable when 
dealing with ranked data in a randomised block design, 
resembling a two-way ANOVA setup. The Friedman test is the 
preferred choice when the data signicantly deviates from a 
normal distribution, making it a robust alternative to ANOVA in 
such cases. Moreover, it is the go-to option among non-
parametric tests when assessing the same parameter under 
various conditions in a repeated measure design. For 
instance, in scenarios like monitoring a subject’s blood 
glucose levels before treatment, after one month of treatment, 
and after three months of treatment.

Assumptions of the Friedman Test:
The group under consideration represents a randomly 
selected subset of the population, and it comprises one group 
of test subjects who are measured on three or more distinct 
occasions. It is important that there is no discernible 
interaction between the various subgroups (blocks or rows) 
and the treatment conditions (columns). Additionally, the 
dependent variable must, at a minimum, exhibit ordinal or 
continuous characteristics. There is no requirement for the 
samples to adhere to a normal distribution. 

The test statistic of Friedman’s test statistic is given by

Where R  is the sum of the ranks for sample j.j 

n is the number of independent blocks
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K is the number of groups or treatment levels
DF – number of groups -1(k – 1)

R-code for Friedman’s test:
A researcher wants to test the reaction time of ve patients on 4 
different drugs. Each patient is measured on each of the 4 
drugs. Friedman test is conducted to determine if the mean 
reaction time differs between drugs. The scores are below:
30, 28, 16, 34, 14, 18, 10, 22, 24, 20, 18, 30, 38, 34, 20, 44, 26, 28, 
14, 30.

H : The mean response time is same for all the four drugs.0

H : The mean response time is different for all four drugs.1

R code:
>data <- data.frame(person = rep(1:5, each=4),
drug = rep(c(1, 2, 3, 4), times=5),
score = c(35, 28, 16, 34, 16, 18, 10, 23, 24, 20,18, 30, 38, 34, 28, 
44, 26, 28, 16, 30))
>friedman.test(y=data$score, groups=data$drug, 
blocks=data$person)

Friedman rank sum test result:
Friedman chi-squared = 12.12, p-value = 0.006983

2The Chi-squared( χ )  test statistic is 12.12 and the p-value is 
0.006983. Since the p value is less than 0.05, The researcher 
has all the evidence to reject the null hypothesis. Thus, the 
researcher concluded that the type of drug used lead to 
statistically signicant differences in response time.

Chi-Square Test:
Chi-square distribution is a direct derivation from the normal 
distribution. It represents the outcome of adding up the 
squares of n independent standard normal variables and is 
referred to as a Chi-square variable with n degrees of freedom.
Applications of Chi-square distribution:
1.  To assess if a population exhibits a specied variance.
2.  To examine the Independence of Attributes within a 

contingency table.
3.  To evaluate the degree to which a theoretical distribution 

aligns with an observed distribution, often referred to as a 
test for ‘Goodness of Fit’. 

Chi-square test for variance:
The chi-square test variance is a statistical method employed 
to compare the variance of a sample with a known population 
variance. Its primary purpose is to evaluate a hypothesis 
regarding the population’s variance. This test relies on the 
assumption that the sample is drawn from a population that 
follows normal distribution. 

Assumptions:
The sample should be selected through a random process 
from the population, and each observation within the sample 
should be unrelated to the others. The distribution of the 
population should closely resemble a normal distribution. 

A random sample has been drawn from a population with 
2mean μ and variance σ , to test whether the population 

2variance is σ ,
The test statistic is given by,

R-code for Chi-square test for Variance:
A researcher wants to test whether the standard deviation of 
strength of rods is more than 8 tons. To study this, the strength 
o f  8  r o d s  w e r e  s e l e c t e d  a n d  t h e  v a l u e s  a r e 
18,13,12,4,17,13,19,6.

H : The standard deviation of strength of the rod is 8 tons.0

H : The standard deviation of strength of the rod is more than 8 1

tons.

R code:
data <- c(18,13,12,4,17,13,19,6)
v a r Te s t ( d a t a , a l t e r n a t i v e = " g r e a t e r " , c o n f . l e v e l  = 
0.95,sigma.squared = 8)
 
chi-square test for variance result:

2Chi-Squared( χ )  = 25.9375, P-value is 0.0005167844
The test statistic for chi-square– test is 25.9375 and the 
corresponding p – value is 0.000516. since this p – value is less 
than 0.05, The researcher has the sufcient evidence to reject 
the null hypothesis. Thus, the researcher concluded that the 
standard deviation of the strength of the rod is more than 8 
tons.

Chi-square test for Independence of Attributes:
A chi-square test for the independence of attributes is 
employed to ascertain if there exists a   signicant association 
between two categorical variables. 

Assumption:
The total frequency N should be substantial (≥ 50). The 
observations should be independent. 

R-code for Chi-square test for Independence of Attributes:
A researcher wants to study whether the examination result 
depends on special coaching. The following table shows the 
results. 

H : Examination result and special coaching are independent.0

H : Examination result and special coaching are not 1

independent.

R code:
>data <-matrix(c(210,90,60,40),ncol=2, byrow = TRUE)
> colnames(data) <-c("Pass","Fail")
> colnames(data) <-c("Pass","Fail")
> rownames <-c("Coaching taken","Coaching not taken")
> chisq.test(data)

Pearson's χ2test result: 
Chi-squared ( χ2) = 2.9782, p-value = 0.0844.
Since the p-value 0.0844 of the test is less than 0.05, the null 
hypothesis is rejected. 

Thus, the researcher concluded that examination result and 
special coaching are not independent.

Chi-square test for Goodness of Fit:
The Chi-Square test is commonly referred to as the ‘Goodness 
of Fit’ test because it allows us to assess how closely theoretical 
distributions, like Binomial, Poisson, Normal, and others, 
match the empirical distribution derived from sample data. 
The chi-square value quanties the extent of disparity 
between the theoretical and observed distributions. 

Assumptions:
The total frequency N should be of a substantial magnitude. 
The theoretical frequencies Ei should have a minimum value of 
5. If any Ei falls below this threshold, it should be pooled with 
the adjacent frequency. When estimating parameters based 
on the observed distribution, for each such estimation, one 
degree of freedom should be subtracted.

The test statistic is 
O_i - observed value
 E_i - Expected value
R-code for Chi-square test for Goodness of Fit: 
Seven coins are tossed 128 times and the following distribution 
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Taken 210 90 300
Not Taken 60 40 100
Total 270 130 400
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is obtained:
Observed: 14 21 30 26 20 17
Expected: 8 21 35 35 21 8
To test whether Binomial distribution is a good t t at 5% level 
of signicance,

H0: Binomial distribution is a good t.
H1: Binomial distribution is not a good t.

R code:
> c h i s q . t e s t ( x = c ( 1 4 , 2 1 , 3 0 , 2 6 , 2 0 , 1 7 ) ,  p = c ( 8 , 2 1 , 
35,35,21,8),rescale.p = TRUE)

Chi-squared χ2 test result:
chi-squared  χ2 = 17.701, p-value = 0.003345
The test statistic for chi-square– test is 17.701 and the 
corresponding p – value is 0.00334. since this p – value is less 
than 0.05, the researcher has the sufcient evidence to reject 
the null hypothesis. Thus, the researcher concluded that 
Binomial distribution is not a good t.

CONCLUSION:
In conclusion, this discussion on parametric and 
nonparametric tests using R code highlights the importance of 
selecting the appropriate statistical method based on various 
factors, including research objectives, population size, and 
data scale. Both parametric and nonparametric tests have 
their strengths and weaknesses, and the choice between them 
should be made judiciously.

Parametric tests rely on specic distributional assumptions 
and can provide greater statistical power when these 
assumptions are met. Nonparametric tests, on the other hand, 
offer robustness in cases where normality assumptions are 
violated but may have lower power, especially with small 
sample sizes.

This resource not only claries the key considerations for 
choosing between these two types of tests but also provides 
valuable insights into their practical application through R 
code examples. Researchers can leverage this knowledge to 
make informed decisions and conduct rigorous statistical 
analysis in their own work, ultimately enhancing the quality 
and reliability of their research outcomes. 
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