Dandy Walker Malformation with Parietal Encephalocele- Case Report.

KEYWORDS Dandy-Walker malformation, encephalocele, posterior cranial fossa, magnetic resonance

ABSTRACT
Dandy-Walker malformation is congenital malformation characterized by dysgenesis of the foramina of Magendie & Lushka in the upper 4th ventricle, hypoplasia of the cerebellar vermis and agenesis of the corpus callosum. Cephaloceles are congenital malformations with herniation of intracranial structures through a defect in the cranium. It is one of the rarest neural tube defect. A 3 year old male child came with 2x2 cm encephalocele on physical examination. On magnetic resonance imaging, the posterior fossa was enlarged with cysts and vermian hypoplasia. A connection was seen between the ventricle and the cysts in the posterior fossa. These findings were significant from the aspect of Dandy-Walker malformation. Bony defect in the right parietal region with extension reaching 7 mm was seen in accordance with encephalocele. It is rare for Dandy-Walker syndrome to occur together with parietal encephalocele.

CASE REPORT:
A 3 Year old male child was brought by his mother with complaint of swelling over parietal region since birth. The swelling was gradually increasing in size and at time of presentation measured approximately 2x2 cm. (FIGURE 1)

There was no history of trauma or developmental delay. Birth history was insignificant.

USG of the swelling revealed possible brain parenchymal tissue with vessels within the lesion. (FIGURE 2) Subsequently MRI Brain was done which showed herniation of CSF and isointense tissue of brain parenchyma into the extracranial subcutaneous plane through skull defect measuring approx 7 mm (seen on relevant CT sections)(FIGURE 3) in right parietal region in the paramedian location near confluence of sinuses, suggestive of encephalocele. The swelling measured approx. 1.5x1.7x2.2 cm (APxTRxCC). Hypoplastic inferior vermis with prominent 4th ventricle and cisterna magna was noted suggestive of Dandy Walker malformation. There was agenesis of the distal body and splenium of corpus callosum. (FIGURE 4)

Figure 1: Clinical photograph of the swelling.

Figure 2a: Ultrasonographic image showing skull defect and brain tissue herniation through it. **2b:** Colour Doppler image showing vascularity with vessels within the herniated tissue.

Figure 3: CT angiography reformated sagittal image of brain showing skull defect in right parietal region with herniated brain tissue.
the 8th week of embryonic life. In contrast, Padget [5] ex-
of the neural tube at the level of the cerebellum before
a primary developmental anomaly that affects the closure
8] US, however, is limited because it is heavily operator-
ate an abnormally high position of torcular herophili, high
MRI is usually required for better anatomic resolution pri-
Malformations of the CNS are best delineated using MRI.
used to delineate the skull defect.
dy-Walker malformation and encephalocele, and is mainly
nation successfully delineates multiple components of Dan-
follow ventricular shunt function. Nonenhanced CT exami-
using vessels in encephalocele.4c) T2 WI sagittal section showing CSF within the lesion.

DISCUSSION:
Agensis of corpus callosum is the most common CNS anomaly associated with Dandy-Walker syndrome. [1] Only few cases of Dandy-Walker syndrome with meningocele or encephalocele have been reported. Curnes JT, Oakes WJ reviewed 3 cases of parietal cephalocele, finding all 3 cases had associated hindbrain deformities; two with Dandy-Walker malformation, the third with a Chiari II malforma-
tion, [2]

theories have been proposed for the pathogenesis of Dandy-Walker syndrome. The original theory was based on aterias of the foramina of Luschka and Magendie. [3] Carmel et al[4] postulated that Dandy-Walker syndrome is a primary developmental anomaly that affects the closure of the neural tube at the level of the cerebellum before the 8th week of embryonic life. In contrast, Padget [5] explained the syndrome as the result of reopening of the neural tube rather than failure to close.

In the present case, however, the coexistence of the en-
cephalocele suggests that the origin is much later than neural tube closure. Furthermore, histological and im-
munohistochemical analyses of human neonate autopsy
and surgical specimens demonstrated that, in contrast to anencephaly which is associated with interruption of the neuronal developmental process, cranium bifidum cysticum presents with completed cortical formation of the telen-
ccephalon with an intact central neural canal, implying that cranium bifidum cysticum originates later than anenceph-
aly. Based on this evidence, the associated encephalocele in our case suggests that Dandy Walker syndrome may not be an early embryonal maldevelopment, but an event occurring much later than the closure of the neural tube.

Dandy-Walker malformation is best diagnosed with the help of ultrasonography (US) and magnetic resonance im-
aging (MRI). US may be the initial examination performed because it can be done portable and without sedation. [7]
US, however, is limited because it is heavily operator-
dependent.

CT is used to diagnose Dandy-Walker malformation and to follow ventricular shunt function. Nonenhanced CT exami-
nation successfully delineates multiple components of Dan-
dy-Walker malformation and encephalocele, and is mainly used to delineate the skull defect.

Malformations of the CNS are best delineated using MRI. MRI is usually required for better anatomic resolution prior to surgical intervention. [8] Sagittal MRI can help evaluate an abnormally high position of torcular herophili, high
tentorial insertion (lambdoid-torcular inversion), hypoplastic and compressed brainstem, and obstructive hydrocepha-
lus secondary to cystic dilatation of the fourth ventricle in patients with Dandy-Walker malformation. MRI also is the procedure of choice for displaying communication of the cephalocele with intracranial structures as well as associ-
ated venous vascular anomalies. [3]

Classic abnormal findings described on cranial CT and MRI scans can also be demonstrated on cranial sonogra-
phy. Transducers of 5-7.5 MHz are used for newborns, and transducers of 3-5 MHz are used for older infants.

surgical methods used to treat Dandy-Walker syndrome in-
clude shunt of the lateral ventricle and in refractory cases shunt of the cyst. This is considered to have a poor prog-
nosis, more so if associated with other CNS anomalies.

CONCLUSION:
There is herniation of CSF and brain parenchyma through skull in right parietal region in paramedian location near confluence of sinuses, suggestive of encephalocele.

Hyoplastic inferior vermis with prominent 4th ventricle and cisterna magna is noted, suggestive of Dandy Walker malformation.

This is also associated with agenesis of the distal body and splenium of corpus callosum.

ACKNOWLEDGEMENTS-
I would like to thank Dr Santosh Konde for providing me the necessary insight to evaluate the case presented in our institution and encourage me to publish this case. I would also like to thank Dr Punit Agrawal and Dr Swapnil Raut for always being there as a constant support and a gem of a colleague to work with. My gratitude also goes out to my guide Brig. Dr Hariqbal Singh for always being a con-
stant source of support for the entire faculty.

REFERENCES:
1) Carmel PW, Antunes JL, Hilal SK: Dandy-Walker syndrome: Clinico-path-
3) Dandy WE, Blackfan KD: Internal hydrocephalus . An experimental, clini-
6) Cakmak A, Zeyrek D, Cekin A, Karazeybek H. Dandy-Walker syndrome to-
gether with occipital encephalocele. Minerva Pediatr. 2008 Aug;60(4):465-
8.
7) Leibovitz Z, Haratz KK, Malinger G, Shapiro I, Pressman C. The foetal posterior fossa dimensions: normal and anomalous development as as-
sessed in the median cranial plane by 3D-MPR sonographic imaging. Ul-

Figure 4a) MRI T1 WI sagittal section of brain showing encephalocele, hypoplastic inferior vermis with promi-
nent 4th ventricle and cisterna magna. Also there is agenesis of the distal body and splenium of corpus callosum.4b) MRI post contrast T1 WI sagittal section of brain showing same findings as in Fig.4a, with enhanc-
ing vessels in encephalocele.4c) T2 WI sagittal section showing CSF within the lesion.