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ABSTRACT

Prediction of element location is still a challenging issue in the field of structural system identification.
This paper presents a new approach for prediction of element locations using inverse technique. A
finite element method (FEM) algorithm is presented here to detect the element location without
having any prior assumptions. The distributed stiffness parameter model of the finite element model
matrix is used instead of lumped mass/stiffness matrix formulation for the global stiffness matrix. The
algorithm is able identify the single as well as multiple element location case. Advantage of the current
approach is to overcome the coupling terms problems, even for multiple element locations can be
indentified in the system parameter matrix. The example on pin-jointed truss is presented for the

better understanding of the approach.

Keywords : System identification, Inverse problem, Structural health Monitoring, element location.

Introduction

evelopments in the field of computational technique
’ultimately forced the structural behavior prediction
using faster computation techniques. The finite

element technique is universally accepted as a fast
computation tool for the structural behavior prediction.

The existence of damage can be identified by comparing the
undamaged structures response and the present response
of structure, any adverse change in the structural response
indicates the existence of damage. Once the existence of
damage is identified, the next step is to find the damage
location. Locations of damage are not known for any
structure initially. In fact, the location of damage is predicted
from the field response data of damaged structure therefore
itis an inverse type problem. Many researchers are trying to
find the location of damage using various approaches. A
brief review is presented here:

Grafe (1998) mentioned that the location detection of
damage and the noise are still the unresolved issues in the
modal updating technique. Fripp and Atalla (2001) reviewed
the modal sensing and actuation techniques using shape
distributed modal transducer and discrete element modal
transducer for practical data. Araki and Miyagi (2005)
formulated damage detection as a mixed integer nonlinear
least-square problem. A linearized error function was
applied to the line search and for grouping of unknown
parameters.

Another most common used technique for damage location
prediction approached by sensitivity analysis or its
derivatives. Hwu and Liang (2001) applied the strain energy
sensitivity approaches in damage detection. Pothisiri and
Hjelmstad (2003) proposed an optimization scheme to
localize damaged sensitivity with measured noise. Bernal
and Gunes (2004) used stochastic excitation technique with
the change in flexibility matrix. Duan et al. (2005) used the
changes of flexibilities matrix using presented a damage
localization approach. A comparative study was presented
by Catbas et al. (2007) they reviewed the practical aspects
of monitoring of bridges on inverse problems.

Gladwell (1999) in an inverse finite element vibration
showed that there is an infinite family of possible systems, of

the required form, corresponding to the given data. Even
when the data consists of just one spectrum, then the analysis
can be used to construct an infinite family of isospectral pairs
of mass and stiffness matrices, all of the correct generic form,
from one such pair. In finite element vibration theoretical
problem thatitis not possible

Itis conclude from the above literature review that the location
of damage element and type of sensors, number and location
of measurement sensors, nonlinear structural response,
energy loss etc. are among still the challenges in the field of
damaged element location identification.

In this paper a new concept of element location is introduced
for system element location in case of inverse problem. Afinite
element approach using the distributed stiffness matrix is
used instead of lumped mass/stiffness matrix formulation of
global stiffness matrix. The element location in the system
matrix are identifying for single as well as multiple change in
the system parameters. Numerical example is tested on a
truss model.

Matrix Transformation from Local to Global

The most common, matrix transformation from the local to
global in the finite element system matrix is usually carried out
using following expression

[K]_[U]T [k][U] )

In the most of the papers the diagonal terms were used for the
system identification by taking the lumped mass/stiffness
matrix parameters. The diagonal terms in the system global
matrix never represent the true element property. Rather it
indicates the property of all the elements meeting at that joint.
Hence the differentiations of the diagonal terms affect all the
elements meeting at that particular joint. Generally,
assumption regarding the damage element locations is
inherent in some or other form for damage detection problem.
Accordingly, in the optimization process the differential
coefficients of elements are taken. For any unknown
parameter location, the differential coefficients are not known.
It may be any unknown constant, may be zero or may be one.
Hence derivatives are not possible due to unknown
parameter locations.
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In other words, any optimization technique cannot be
applied without knowing the prior element location. The
above concept is applicable to the sensitivity analysis also.
Some of the general observations on damage location
prediction algorithms using inverse problem are:

. Damaged elementlocations are unknown
. Matrix inversion should be avoided. (Dewangan, 2011)

. Damage prediction with noisy data set on diagonal
member is a difficult task

In the damage parameter estimation the

Global stiffness/mass matrices use the diagonal terms for
calculations. The diagonal element does not represent a
single element property. They represent the mixed property
of the members meeting at a joint in the corresponding row
according to degree of freedom (DOF) of the joint in the row
or column. The drawback in using the diagonal terms of a
matrix is that, the element properties of the local elements
are being added in terms of global matrix. Even
minimizations of diagonal terms with noisy data are a difficult
task, as noise locations are not known. Therefore it is
concluded that the minimizations of diagonal terms with
noisy output are difficult to handle.

In order to demonstrate the elements locations in the global
stiffness matrix using the distributed stiffness parameters
the global matrix is assembled for a pin jointed truss
structure.

Figure 1: Pinjointed redundanttruss
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For the truss structure, Fig. 1, the modulus of elasticity of all
elements are 206.8 GPa and initial undamaged cross
sectional area of all members is 322.6 mm’.

In order to demonstrate the elements locations in the global
stiffness matrix, assuming a hypothetical local element
stiffness values for the elements are 1, 2, 3,4, 5and 6 as k,,
k,, ks, K, ks and k, respectively. The global transformation of
such all type of elements is performed using finite element
transformation Eq.1. The assembled global stiffness matrix
Kis shown in Fig.2. From the global stiffness matrix, the
elementlocations can be readout directly.

Considering the upper diagonal of global stiffness matrix the
element locations are: Element 1 (7;,7,,¢;,¢,), Where r
represents the row number and c is the column number.
Similarly the other Elements are located at: Element 2
(ry,7,,6,¢ ).Element3 (4.7, ¢5.6), Element4 (75,7, 6, G ),
Element5 (7357 > €, & ).and Element 6 at (7> 735 €55 Gy
locations.

Itis to be noted that the off diagonal terms in global stiffness
matrix relates to the element property directly, Fig. 2. Due to
symmetry of matrix in the linear range, one can consider as
lower diagonal portion also. These element locations reflect
the individual element property directly in global stiffness
matrix.

Figure 2 : Element locations in global stiffness
matrix
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Ifamemberis having its end node numbersas| andJ | (here
J ) then it can be placed in the global matrix at a row location (
21-1,2l) and column location (2J-1, 2J) in the upper diagonal.
Here off diagonal terms, reflect the element property directly.
The locations in the global coordinates are demonstrated for
damage prediction. This element location plays a key role in
separation of the damaged members individually. The above
concept is explained with the help of numerical examples in
the following paragraph.

Following paragraph demonstrate the developed algorithm in
the context of a pin jointed truss model. The structural
configuration is shownin Fig. 3. [2].

Figure 3: Pinjointed truss structure

The load displacement relationship is assumed as a linear
one for small displacements. For a two dimensional linear
finite element model, the element locations are shown
encircled. The Joint numbers are shown without encircled
along with their displacement degree of freedom. The
modulus of elasticity £ =29.5 X10° N /mm* and the
original cross-sectional area of all members are A=100 mm2
for the undamaged condition are considered. Global stiffness
matrix K for the original structure is generated using linear
FEM model.
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Change in the element stiffness parameter is introduce as
the reduction in the cross sectional area of the member. A
change value of stiffness parameters 10%, 20% and 25%
are introduced in the elements 1, 3 and 4 respectively. The
global stiffness matrix for changed structure is generated
multiplying the reduced stiffness values constants to
respective element stiffness at their corresponding
locations. The assembled global stiffness matrix K, for
changed structure is arrived by assembling stiffness of
various members0.9k;,, k,, 0.8 k; and 0.75 k,. Where k, to k,
are the element stiffness matrixes of original unchanged
structure. The computed matrices of K, K, and (K- K,) are
computed. The results are computed for various examples
are tabulated in Table 1 for this example.

Table 1. Element locations prediction for Pin Jointed truss,

With reference to the above Table, Case 3 is explained here.
Changes are introduced at some of the unknown locations.
The joint displacements are measured with the sets of forces
as stated above. The row echelon form is used for
computation of changed stiffness matrix. Once the changed
stiffness matrix (K,) is known, elements locations are read out
from their respective locations as discussed above.
Conclusions

In this paper, a completely new approach for element location
using finite element model was presented. The physical
meaning of the matrix transformation [K]=[U]'[k][U] was
established with special emphasizing element location.
Element locations in the global stiffness matrix system for a
two-dimensional pin jointed structure were predicted for

Fig.3 system matrix changed parameters. The same conclusions
can be extended to a three-dimension structure. The beauty

Case| member location "g:f‘:”’ed I'\é':mgd"f’gfr:?gsl ocation of the element locations identification technique is that these
T |23 Displacements|2,3 locations are unaffected by other element locations or the
2 238 Displacements|2,3,8 coupling terms.

3 2,3,4 Displacements|2,3,4

4 2,3,4,7,8 Displacements|2,3,4,7,8

5 All Displacements|All
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