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ABSTRACT Uncertainty Lineage Database (ULDB), Lineage enables simple and consistent representation of uncertain 
data, it correlates uncertainty in query results with uncertainty in the input data and query processing with lineage and 
uncertainty together presents computational benefits over treating them individual. Lineage identifies a data item’s 
derivation, in terms of other data in the database or outside data sources. In this case study we combine lineage and 
uncertainty into one data model.
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Fundamental
Lineage is also important for uncertainty within a single da-
tabase. One relationship between uncertainty and lineage 
is that lineage can be used for understanding and resolving 
uncertainty. To draw a loose analogy with web search, cor-
rectness of answers returned by a search engine is uncertain, 
reflected by their ranking.

Search engine basically provide lineage information includ-
ing at least a URL and text snippet, and users tend to con-
sider both ranking and lineage to determine which links to 
follow. Many applications that integrate information from 
multiple sources may be uncertain about which data is cor-
rect and the original source and derivation of data may offer 
helpful additional information. Lineage is also important for 
uncertainty within a single database, when any users pose 
queries against uncertain data, the results are uncertain too. 
Lineage facilitates the correlation and coordination of uncer-
tainty in query results with uncertainty in the input data. For 
instance we know that either one set of base data is correct 
or another one is but not both. Then we do not want to pro-
duce any query results that are derived by combine data from 
the two sets, directly or indirectly. Lineage is a particularly 
convenient and intuitive mechanism for encoding the com-
plex uncertainty relationship that can arise among base and 
derived data.

In this we formalize query processing on ULDBs at currently 
algorithms for running a wide class of relational operators 
and describe how these algorithms can be join to execute 
complex / difficult de

Databases with Lineage
Here describing databases with lineage, which we can say 
LDBs. LDBs and ULDBs extend the relational model, each 
relation is a multiset of tuples. We continue to attach unique 
identifiers to each tuple in the database. A set of relations R 
= {R1,…..,Rn} in a database, user can use I(R) to denote all 
identifiers in relations R1,…..Rn.

The lineage of a tuple identifies the data from which it was de-
rived. Some tuples are LDB are derived from other LDB tuples, 
like output of queries. The lineage of derived tuples consists 
of references to other tuples in the LDB, through their unique 
identifiers, base tuple in some type of cases may be derived 
from entities outside the LDB, like external data set or a sensor 
feed. For the next case we bring in external lineage. External 
Lineage refers to a set of external symbols we denote by E. 
The set of symbols known to an LDB is S=I(R) E.

For example, we introduce as a running example from Ex-
amination Copy-Solver database. Consider LDB relations 
Student(Stud_Name, Paper) and Observer(Ob_Name, Pa-
per) representing student information and subject (paper) 

sightings respectively. Consider also a relation Check (Ob_
Name, Stud_Name) produced by the query Ob_Name,Stud_
Name(Observer [X] Student). Here is some sample data like: 

Observer: Student:
ID  Ob Name Paper ID Stud_Name  Paper
01  BKP  C   11 VKP Java
02  SBP  C++ 12 SDB C
03  BKP Java 13 HBM Java
     14 VKP C++

Check:
ID Ob_Name  Stud_Name Paper 
21 BKP   SDB C
22 BKP   VKP Java
23 BKP   HBM Java
24 SBP VKP   C++

Operations:
ƛ (21)= 01 ^ 12 ƛ (22)= 03 ^ 11
ƛ (23)= 03 ^ 13 ƛ (24)= 02 ^ 14

However operations are performed there is often an lineage 
function for the tuples in the result. The above example pre-
sent a natural lineage function for joins: Lineage of a tuple t 
in the result of a join is a conjunction of the set of tuples from 
each of the joined relations, that were combined to form t, 
e.g. BKP, SBP, BBM is obtained from BKP,C and SDB,C. Some 
operation such as select, project, join and union, create only 
conjunctive lineage. However some other operations create 
more complex lineage formulas. For instance the difference 
operator creates negations in the Boolean formula, while du-
plicate elimination creates disjunctions. In an LDB query re-
sults lineage that refers to other tuples in the database. In our 
model t he result of applying a query Q to database D includes 
the original relations R and new relation for Q’s answer with the 
appropriate lineage function. While a relation may contain du-
plicates, each tuple has its own lineage. For example , tuples 
22 and 23 in above example have same data but each one has 
different derivation and therefore different lineage. It we per-
form a duplicate elimination on Check we obtain one 22 23.

We specify algorithms for all relational operators, in our case 
study the emphasis is on readability particularly for under-
standing how lineage is generated. Implementations as real 
physical operators would instead focus on efficiency. We 
specify our operators so that each one unfolds lineage as it 
produces results. When the relations S1,….,Sn at the leaves 
of the plan are base relations we treat all of their tuples to 
have ƛ (t)= t. Thus the unfolded lineage that is output by 
every operator. Including the root, refers to data in the input 
relations. That is we never generate lineage referring to in-
termediate results within a single query. If we have a derived 
input relation S, we require query result lineage to refer to 
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tuples in S, rather than further unfolding S’s lineage. When 
executing a query plan we treat the lineage of all input tuples 
t as ƛ (t)=t.

Selection and Projection
Selection: Consider σ operator applied to relation S with lin-
eage ƛS. We produce the result R with lineage ƛ as under 
given,

(1) For each tuple t in S with at least one alternative satisfy-
ing the selection predicate, add a tuple to R containing 
all alternatives in t satisfying t he selection predicate,

(2) For each alternative in R corresponding to alternative S in 
S , set ƛ ()= ƛS (S).

Projection: Consider Operator π applied to relation S with 
lineage ƛS. We produce the result R with lineage ƛ as under 
given,

(1) For each tuple in S add corresponding tuple to R with 
each alternative projected onto the specified attribute 
list.

(2) For each alternative in R corresponding to alternative αs 
S in S , set ƛ (α)= ƛS (S).

Join, Union And Inetersection
Join: Consider operator [X] applied to S1 and S2 in S2 if at 
with lineage ƛ1 and ƛ2 respectively, we produce the result R 
with lineage ƛ as under given,

(1) For each pair of tuples S1 and S2 if at least one pair of 
alternatives matches the join condition:

a. Construct a tuple t in R with an alternative for every pair 
of alternatives 1 and 2 satisfying the join condition.

b. For each alternative in t , set ƛ (α)= ƛ1 (α1) ƛ2 (α2).

Union: Consider operator applied to S1 and S2 with lineage 
ƛ1 and ƛ2, we produce the result R with lineage ƛ as under 
given. 

(1) For each tuple in S1 , add an identical tuple to R.
(2) For each alternative in R corresponding to alternative α1 

in S1 set ƛ (α)= ƛ1 (α1 (=ƛ2 (α2).

Intersection: Consider operator applied to S1 and S2 with 
lineage ƛ1 and ƛ2, we produce the result R with lineage ƛ as 
under given

(1) For each tuple S1:
A. Create a tuple t in R containing all alternatives S1 that 

appear in S2, drop t if no alternative S1 appears in S2.
b.  For each alternative in t.

Duplicate Elimination
Consider operator δ applied to relation S with lineage λS. 
We produce the result R with lineage ƛ as follows. Note the 
disjunctive lineage.

(1) For each alternative as in S whose value appears more 
than once in S, add a single tuple to R with a single alter-
native a having the same value as as.

(2) Add to R all tuples in S but without any of the alternatives 
added in step 1.

(3) For each alternative a in R set

λ(a) = λS(s1) ∨ λS(s2) ∨ · · · ∨ λS(sm)

where s1, s2, . . . , sm are all the alternatives in S having the 
same value as a.

Other Operations on ULDB Databases
We have seen how relational queries over ULDB databases 
are executed. The computation and representation of query 
answers (though not the possible instances) can depend on 
whether the input and the output are minimal. we define two 
notions of minimality for ULDBs: (1) D-minimality, guarantee-
ing that a ULDB does not contain extraneous data, and (2) 
L-minimality, guaranteeing that a ULDB does not contain ex-
traneous lineage. We discuss both types of minimization. Be-
cause we are tracking lineage, we cannot look at an x-relation 
in a ULDB in isolation of others. Hence, we consider the ex-
traction problem, where the goal is to

ULDB States and Queries
return only the relation that is the answer to a query (or more 
generally, a set of x-relations),without the original database. 
The challenge here is to extract the appropriate lineage 
along with the result x-relation, so that the correct set of pos-
sible instances is preserved. Throughout this section, we con-
fine our attention to ULDB databases that have a certain kind 
of lineage, called well-behaved lineage. We formally specify 
well-behaved lineage in above figure summarizes the differ-
ent operations on ULDBs considered and the possible transi-
tions between states of the ULDB. For instance, the extrac-
tion edge guarantees well-behaved lineage and D-minimality 
are preserved. In order to guarantee well-behaved lineage 
and L-minimality, the query edge in figure must be restricted 
to conjunctive queries.
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