
26 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 2 | Issue : 3 | December 2012 | ISSN - 2249-555XReseaRch PaPeR Computer Science

Uncertainty Lineage Databases - A case Study

Mr. Vishal K. Pandya Dr. Dhaval R. Kathiriya

(HOD, Shri V J Modha College Of IT)
Director, Information Technology Anand Agricultural

University, Anand

ABSTRACT Uncertainty Lineage Database (ULDB), Lineage enables simple and consistent representation of uncertain
data, it correlates uncertainty in query results with uncertainty in the input data and query processing with lineage and
uncertainty together presents computational benefits over treating them individual. Lineage identifies a data item’s
derivation, in terms of other data in the database or outside data sources. In this case study we combine lineage and
uncertainty into one data model.

Keywords

Fundamental
Lineage is also important for uncertainty within a single da-
tabase. One relationship between uncertainty and lineage
is that lineage can be used for understanding and resolving
uncertainty. To draw a loose analogy with web search, cor-
rectness of answers returned by a search engine is uncertain,
reflected by their ranking.

Search engine basically provide lineage information includ-
ing at least a URL and text snippet, and users tend to con-
sider both ranking and lineage to determine which links to
follow. Many applications that integrate information from
multiple sources may be uncertain about which data is cor-
rect and the original source and derivation of data may offer
helpful additional information. Lineage is also important for
uncertainty within a single database, when any users pose
queries against uncertain data, the results are uncertain too.
Lineage facilitates the correlation and coordination of uncer-
tainty in query results with uncertainty in the input data. For
instance we know that either one set of base data is correct
or another one is but not both. Then we do not want to pro-
duce any query results that are derived by combine data from
the two sets, directly or indirectly. Lineage is a particularly
convenient and intuitive mechanism for encoding the com-
plex uncertainty relationship that can arise among base and
derived data.

In this we formalize query processing on ULDBs at currently
algorithms for running a wide class of relational operators
and describe how these algorithms can be join to execute
complex / difficult de

Databases with Lineage
Here describing databases with lineage, which we can say
LDBs. LDBs and ULDBs extend the relational model, each
relation is a multiset of tuples. We continue to attach unique
identifiers to each tuple in the database. A set of relations R
= {R1,…..,Rn} in a database, user can use I(R) to denote all
identifiers in relations R1,…..Rn.

The lineage of a tuple identifies the data from which it was de-
rived. Some tuples are LDB are derived from other LDB tuples,
like output of queries. The lineage of derived tuples consists
of references to other tuples in the LDB, through their unique
identifiers, base tuple in some type of cases may be derived
from entities outside the LDB, like external data set or a sensor
feed. For the next case we bring in external lineage. External
Lineage refers to a set of external symbols we denote by E.
The set of symbols known to an LDB is S=I(R) E.

For example, we introduce as a running example from Ex-
amination Copy-Solver database. Consider LDB relations
Student(Stud_Name, Paper) and Observer(Ob_Name, Pa-
per) representing student information and subject (paper)

sightings respectively. Consider also a relation Check (Ob_
Name, Stud_Name) produced by the query Ob_Name,Stud_
Name(Observer [X] Student). Here is some sample data like:

Observer: Student:
ID Ob Name Paper ID Stud_Name Paper
01 BKP C 11 VKP Java
02 SBP C++ 12 SDB C
03 BKP Java 13 HBM Java
 14 VKP C++

Check:
ID Ob_Name Stud_Name Paper
21 BKP SDB C
22 BKP VKP Java
23 BKP HBM Java
24 SBP VKP C++

Operations:
ƛ (21)= 01 ^ 12 ƛ (22)= 03 ^ 11
ƛ (23)= 03 ^ 13 ƛ (24)= 02 ^ 14

However operations are performed there is often an lineage
function for the tuples in the result. The above example pre-
sent a natural lineage function for joins: Lineage of a tuple t
in the result of a join is a conjunction of the set of tuples from
each of the joined relations, that were combined to form t,
e.g. BKP, SBP, BBM is obtained from BKP,C and SDB,C. Some
operation such as select, project, join and union, create only
conjunctive lineage. However some other operations create
more complex lineage formulas. For instance the difference
operator creates negations in the Boolean formula, while du-
plicate elimination creates disjunctions. In an LDB query re-
sults lineage that refers to other tuples in the database. In our
model t he result of applying a query Q to database D includes
the original relations R and new relation for Q’s answer with the
appropriate lineage function. While a relation may contain du-
plicates, each tuple has its own lineage. For example , tuples
22 and 23 in above example have same data but each one has
different derivation and therefore different lineage. It we per-
form a duplicate elimination on Check we obtain one 22 23.

We specify algorithms for all relational operators, in our case
study the emphasis is on readability particularly for under-
standing how lineage is generated. Implementations as real
physical operators would instead focus on efficiency. We
specify our operators so that each one unfolds lineage as it
produces results. When the relations S1,….,Sn at the leaves
of the plan are base relations we treat all of their tuples to
have ƛ (t)= t. Thus the unfolded lineage that is output by
every operator. Including the root, refers to data in the input
relations. That is we never generate lineage referring to in-
termediate results within a single query. If we have a derived
input relation S, we require query result lineage to refer to

INDIAN JOURNAL OF APPLIED RESEARCH X 27

Volume : 2 | Issue : 3 | December 2012 | ISSN - 2249-555XReseaRch PaPeR

tuples in S, rather than further unfolding S’s lineage. When
executing a query plan we treat the lineage of all input tuples
t as ƛ (t)=t.

Selection and Projection
Selection: Consider σ operator applied to relation S with lin-
eage ƛS. We produce the result R with lineage ƛ as under
given,

(1) For each tuple t in S with at least one alternative satisfy-
ing the selection predicate, add a tuple to R containing
all alternatives in t satisfying t he selection predicate,

(2) For each alternative in R corresponding to alternative S in
S , set ƛ ()= ƛS (S).

Projection: Consider Operator π applied to relation S with
lineage ƛS. We produce the result R with lineage ƛ as under
given,

(1) For each tuple in S add corresponding tuple to R with
each alternative projected onto the specified attribute
list.

(2) For each alternative in R corresponding to alternative αs
S in S , set ƛ (α)= ƛS (S).

Join, Union And Inetersection
Join: Consider operator [X] applied to S1 and S2 in S2 if at
with lineage ƛ1 and ƛ2 respectively, we produce the result R
with lineage ƛ as under given,

(1) For each pair of tuples S1 and S2 if at least one pair of
alternatives matches the join condition:

a. Construct a tuple t in R with an alternative for every pair
of alternatives 1 and 2 satisfying the join condition.

b. For each alternative in t , set ƛ (α)= ƛ1 (α1) ƛ2 (α2).

Union: Consider operator applied to S1 and S2 with lineage
ƛ1 and ƛ2, we produce the result R with lineage ƛ as under
given.

(1) For each tuple in S1 , add an identical tuple to R.
(2) For each alternative in R corresponding to alternative α1

in S1 set ƛ (α)= ƛ1 (α1 (=ƛ2 (α2).

Intersection: Consider operator applied to S1 and S2 with
lineage ƛ1 and ƛ2, we produce the result R with lineage ƛ as
under given

(1) For each tuple S1:
A. Create a tuple t in R containing all alternatives S1 that

appear in S2, drop t if no alternative S1 appears in S2.
b. For each alternative in t.

Duplicate Elimination
Consider operator δ applied to relation S with lineage λS.
We produce the result R with lineage ƛ as follows. Note the
disjunctive lineage.

(1) For each alternative as in S whose value appears more
than once in S, add a single tuple to R with a single alter-
native a having the same value as as.

(2) Add to R all tuples in S but without any of the alternatives
added in step 1.

(3) For each alternative a in R set

λ(a) = λS(s1) ∨ λS(s2) ∨ · · · ∨ λS(sm)

where s1, s2, . . . , sm are all the alternatives in S having the
same value as a.

Other Operations on ULDB Databases
We have seen how relational queries over ULDB databases
are executed. The computation and representation of query
answers (though not the possible instances) can depend on
whether the input and the output are minimal. we define two
notions of minimality for ULDBs: (1) D-minimality, guarantee-
ing that a ULDB does not contain extraneous data, and (2)
L-minimality, guaranteeing that a ULDB does not contain ex-
traneous lineage. We discuss both types of minimization. Be-
cause we are tracking lineage, we cannot look at an x-relation
in a ULDB in isolation of others. Hence, we consider the ex-
traction problem, where the goal is to

ULDB States and Queries
return only the relation that is the answer to a query (or more
generally, a set of x-relations),without the original database.
The challenge here is to extract the appropriate lineage
along with the result x-relation, so that the correct set of pos-
sible instances is preserved. Throughout this section, we con-
fine our attention to ULDB databases that have a certain kind
of lineage, called well-behaved lineage. We formally specify
well-behaved lineage in above figure summarizes the differ-
ent operations on ULDBs considered and the possible transi-
tions between states of the ULDB. For instance, the extrac-
tion edge guarantees well-behaved lineage and D-minimality
are preserved. In order to guarantee well-behaved lineage
and L-minimality, the query edge in figure must be restricted
to conjunctive queries.

REFERENCE (1) P. Buneman, S. Khanna, and W. Tan. “Why and Where: A Characterization of | Data Provenance”. In: Proc.
of Intl. Conference on Database Theory (ICDT),2001. | (2) P. Buneman, S. Khanna, and W. Tan. “On Propagation of Deletions
and Annotations | Through Views.”. In: Proc. of ACM Symp. on Principles of Database Systems (PODS), 2002. | (3) Y. Cui and
J. Widom. “Practical Lineage Tracing in Data Warehouses.”. In: Proc. of Intl. Conf. on Data Engineering (ICDE), 2000. | (4) Y.
Cui, J. Widom, and J. L. Wiener. “Tracing the Lineage of View Data in a Warehousing Environment”. ACM Transactions on
Database Systems (TODS), Vol. 25, No. 2, 2000.

