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ABSTRACT It is easy to observe that the number of moving objects in moving objects databases like those used in 
transportation systems, or air traffic control centers may be very large. To achieve an acceptable level of performance with 
such large volumes of continuously changing data, in answering moving object queries, it is not desirable to examine 
the location of each moving object in the database. Indexing the location attribute is hence necessary. The widely used 
mechanisms for indexing spatial data, like R Trees, MVB Trees, and Quad Trees etc would not the serve the purpose well 
since the data in spatio-temporal applications have to be continuously updated. Movement of a point object represents 
the trajectory of the moving point object. Data is typically treated as a set of line segments that collectively describe the 
trajectory of a moving object in the database. One simplifying approach suggested in [1] is to consider indexing structures 
to be appendonly with respect to time.This means,data grows mainly in the temporaldimension.
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THE FM ALGORITHM AND COUNTING SKETCH 
Estimating the number of distinct objects in a dataset has 
received considerable attention. Many methods in the litera-
ture are based on the FM algorithm developed by Flajolet 
and Martin [FM85]. FM requires a hash function h which takes 
as input an object id o, and outputs a pseudorandom integer 
h(o) with a geometric distribution, that is, Prob[h(o)=v] = 2-v 
for v>=1. A sketch consists of r bits, whose initial values are 
set to 0. For every object o in the dataset, FM sets the h(o)-th 
bit (of the sketch) to 1. After processing all objects, FM finds 
the first bit of the sketch that is still 0.

THE aRB TREE 
The aRB-tree facilitates aggregate processing by eliminating 
the need to descend nodes that are totally enclosed by the 
query. As an example, consider the query in Figure (with interval 
qt=[1,3]). Search starts from the root of the R-tree. Entry R1 is 
totally contained inside the query window and the correspond-
ing Btree is retrieved. Since the entries of the root node in this 
B-tree contain the aggregate data of interval [1,3] (and [4,5]), the 
next level of the B-tree does not need to be accessed and the 
contribution of R1 (i.e., the contribution of r1, r2) to the query re-
sult is 685. The second root entry R2 of the R-tree partially over-
laps the query rectangle qr; hence, the algorithm visits its child 
node, where only entry r4 intersects qs, and thus its B-tree is re-
trieved. The first root entry suggests that the contribution of r4 
for interval [1,2] is 259. In order to complete the result, we have 
to descend the second entry and retrieve the aggregate value 
of r4 for timestamp 3 (i.e., 125). The total number of objects in 
these regions during the interval [1,3] is the sum 685+259+125. 
Nevertheless, the aRB-tree does not take into account multiple 
object occurrences. Therefore, aRB-trees are not directly appli-
cable for applications that require distinct counting.

 REGIONS AND THEIR AGGREGATE DATA 

THE ARB TREE
DISTINCT SPATIO – TEMPORAL AGGREGATION IMPLE-
MENTATION (SKETCH INDEXING STRUCTURE) 
Using the FM algorithm discussed in Section 2, for each re-
gion ri (1=i=m) and timestamp t we maintain a sketch si(t) 
that captures the (ids of) objects in ri at t. Figure 3.1 pre-
sents the system for distinct aggregation. At each timestamp, 
every object reports its id (or measure, for DS queries) to the 
region that covers its location. The region has a sketch gen-
erator that creates the corresponding sketches based on the 
object information, and transmits them to the database.

SYSTEM ARCHITECTURE
The sketches received by the database can be stored in a two 
dimensional array shown in Figure.

MINING SPATIO – TEMPORAL ASSOCIATION RULES
Consider a user in region ri at time t. What is the probabil-
ity p that this user will appear in region rj by time t+T? We 
denote such a spatio-temporal association rule with the syn-
tax (ri,T,p)⇒rj. Inferring such rules is important in practice. 
For example, in mobile computing, they can identify trends 
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in user movements and lead to better allocation of antenna 
bandwidth to cater for potential network congestions in the 
near future. Additional constraints, such that ri and rj must 
be within certain distance, may also be specified. Then, the 
number of objects that appear in ri at time t and then appear 
in rj during [t+1, t+T] equals n1+n2-n3. This idea naturally 
leads to a simple brute-force algorithm for discovering the 
association rules, checks all possible instances of (ri, rj, t).

OBJECTIVES AND CONTRIBUTIONS
As described in the previous section, spatial indexing struc-
tures do not serve the purpose well enough when they have 
to deal with spatio-temporal data. Spatio-temporal indexing 
structures described in the previous section are mechanisms 
that are designed to deal with continuously changing data 
points. Another class of spatio temporal indexing structures 
are designed to deal with moving object data that changes 
only discretely. Such data can be indexed efficiently by sim-
ply coalescing indexing structures like R Trees, Quad Trees 
etc with those useable for versioning data, like B Trees and 
B+ Trees. Examples of such indexing structures include MVB 
Tree. These indexing structures are easy to implement, man-
age and have their own class of applications. One such appli-
cation under study as part of this project work is aggregation 
querying on moving objects data.

AGGREGATION QUERIES 
Given a region (a bounding box), a spatial aggregation query 
is expected to retrieve aggregated data about all moving ob-
jects in the specified region. For some applications of mov-
ing object databases, this class of queries is very important. 
Traffic data analysis is one important example. As a motivat-
ing example, consider the query “find the road segments 
with the heaviest traffic near the centre” or, given a medical 
emergency, “which is the hospital that can be reached fast-
est, given the current traffic situation” [aR Tree ref]. In both 
cases, we are interested only in the number of cars and not 
the specific details. Now, if the positions of the cars and line 
segments representing roads are indexed in two different R 
Trees, the join could be time-consuming. Answering a query 
such as “give me the traffic for every road segment in an area 
of 1km radius around each hospital” would require a spatial 
join between the indexing structures. Such a join is inherently 
costly. Also, analytical/aggregation queries in the spatio-tem-
poral context are different from those involving non-spatial 
attributes in the sense that there is very little apriori

knowledge about the grouping hierarchy. In addition to 
some predefined regions, a user may request groupings from 
an arbitrary grid in a selected window.

INDEXING FOR AGGREGATION QUERIES 
Aggregation R Tree[ref] is an example of an indexing structure 
that is designed to index spatial aggregate data. This struc-
ture however does not deal too well with temporal attributes 
of data points. In fact, it uses mechanisms like individual in-
cremental updates (IIU) and batch incremental updates (BIU) 
to make moving object updates more efficient. A ‘temporal 
lifting’ of such a structure is to add versioning support using 
B trees that represent versions. A similar yet more advanced 
structure for spatio-temporal aggregation queries has been 
proposed, called the aRB Tree[ref]. The aRB or the aggregate 
R- B- Tree uses ‘sketches’ to represent moving object data 
in an R Tree. The details of the aRB Tree have already been 
dealt with in the previous section.

IMPLEMENTING THE aRB TREE 
As described in the previous sections, the aRB Tree uses the 
R- and B- Trees to maintain spatial and temporal aggregation 
data respectively. We attempt to implement this structure 
and design algorithms for answering a decent range of ag-
gregation queries. It is shown in the following sections that, 
user queries that ask for aggregations from arbitrary group-
ings can efficiently answered using the indexing structure. 
The implementation also aims at eliminating certain inherent 
drawbacks of using R Trees in this indexing structure. Also, for 
range queries involving time, we suggest the use of B+ Trees 
instead of B Trees. Also, the indexing structure introduces the 
concept of sketches for representing moving objects data. 
This idea is actually very interesting and useful in applica-
tions that look for frequent moving patterns. For example, a 
query that asks for the region at time ‘t ‘ with the maximum 
population density can be easily answered using algorithms 
on the aRB Tree that deal just with the sketch bit strings. The 
same is the case with a query that asks for say, ‘What is the 
percentage population in-flow for Electronics City during the 
time interval (t1, t2)’? Algorithms to a host of similar queries 
will be described and demonstrated in the sections to follow.

IMPLEMENTATION OF QUERYING FEATURES USING aRB TREE 
This section introduces various querying features implement-
ed by the team as part of this project. The detailed algo-
rithms will follow in the next chapter of the report. The sim-
plest aggregation query in this data structure would be to ask 
for the total number of objects in a given bounding box/area 
during a given time interval (t1, t2). This would simply involve 
operations like ‘OR’ing of and counting the number of 1’s in a 
given bit string, similar to the algorithm explained in the pre-
vious section. The more complex queries could involve ask-
ing for the time of day when a given bounding box observed 
its maximum population density. This query is equivalent to 
asking a moving object database, “When during the day, did 
Electronics City’s population peak?”

The advantage of using aRB trees with sketches lies in the fact 
that it houses enough granularity to answer queries like “When 
did the bus with Route Number 111 enter R T Nagar?”, despite 
the fact that aRB Tree is a structure designed to support aggre-
gation queries. Another interesting query could ask for “List all 
fighter planes that passed through area - Id BG235”. 

CONCLUSION 
The proposed aRB Tree is implemented using the C lan-
guage and various querying features are demonstrated as 
discussed in the previous sections. The structure despite 
being designed keeping aggregations in mind, serves really 
well for queries requiring higher granularities. We discover 
a few drawbacks of the structure proposed in [ref] and sug-
gest implementation mechanisms to overcome them. Also, 
as mentioned the section 2, structures like R*- trees and B+ 
Trees would be better options for implementing the struc-
ture. Spatio-temporal pattern mining is also a much more 
simplified task using sketches in aRB Trees.
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