
INDIAN JOURNAL OF APPLIED RESEARCH X 111

Volume : 2 | Issue : 3 | December 2012 | ISSN - 2249-555XReseaRch PaPeR Management

Data Mining for Moving Object Data

Mr. Kalpesh R. Rakholiya Dr. Dhaval Kathiriya
Ass. Pro. (HOD) Shri patel kelavani mandal college of

technology junagadh
IT Director,University Bhavan,

Anand Agriculture University, Anand

ABSTRACT It is easy to observe that the number of moving objects in moving objects databases like those used in
transportation systems, or air traffic control centers may be very large. To achieve an acceptable level of performance with
such large volumes of continuously changing data, in answering moving object queries, it is not desirable to examine
the location of each moving object in the database. Indexing the location attribute is hence necessary. The widely used
mechanisms for indexing spatial data, like R Trees, MVB Trees, and Quad Trees etc would not the serve the purpose well
since the data in spatio-temporal applications have to be continuously updated. Movement of a point object represents
the trajectory of the moving point object. Data is typically treated as a set of line segments that collectively describe the
trajectory of a moving object in the database. One simplifying approach suggested in [1] is to consider indexing structures
to be appendonly with respect to time.This means,data grows mainly in the temporaldimension.

Keywords Data mining, moving object data

THE FM ALGORITHM AND COUNTING SKETCH
Estimating the number of distinct objects in a dataset has
received considerable attention. Many methods in the litera-
ture are based on the FM algorithm developed by Flajolet
and Martin [FM85]. FM requires a hash function h which takes
as input an object id o, and outputs a pseudorandom integer
h(o) with a geometric distribution, that is, Prob[h(o)=v] = 2-v
for v>=1. A sketch consists of r bits, whose initial values are
set to 0. For every object o in the dataset, FM sets the h(o)-th
bit (of the sketch) to 1. After processing all objects, FM finds
the first bit of the sketch that is still 0.

THE aRB TREE
The aRB-tree facilitates aggregate processing by eliminating
the need to descend nodes that are totally enclosed by the
query. As an example, consider the query in Figure (with interval
qt=[1,3]). Search starts from the root of the R-tree. Entry R1 is
totally contained inside the query window and the correspond-
ing Btree is retrieved. Since the entries of the root node in this
B-tree contain the aggregate data of interval [1,3] (and [4,5]), the
next level of the B-tree does not need to be accessed and the
contribution of R1 (i.e., the contribution of r1, r2) to the query re-
sult is 685. The second root entry R2 of the R-tree partially over-
laps the query rectangle qr; hence, the algorithm visits its child
node, where only entry r4 intersects qs, and thus its B-tree is re-
trieved. The first root entry suggests that the contribution of r4
for interval [1,2] is 259. In order to complete the result, we have
to descend the second entry and retrieve the aggregate value
of r4 for timestamp 3 (i.e., 125). The total number of objects in
these regions during the interval [1,3] is the sum 685+259+125.
Nevertheless, the aRB-tree does not take into account multiple
object occurrences. Therefore, aRB-trees are not directly appli-
cable for applications that require distinct counting.

 REGIONS AND THEIR AGGREGATE DATA

THE ARB TREE
DISTINCT SPATIO – TEMPORAL AGGREGATION IMPLE-
MENTATION (SKETCH INDEXING STRUCTURE)
Using the FM algorithm discussed in Section 2, for each re-
gion ri (1=i=m) and timestamp t we maintain a sketch si(t)
that captures the (ids of) objects in ri at t. Figure 3.1 pre-
sents the system for distinct aggregation. At each timestamp,
every object reports its id (or measure, for DS queries) to the
region that covers its location. The region has a sketch gen-
erator that creates the corresponding sketches based on the
object information, and transmits them to the database.

SYSTEM ARCHITECTURE
The sketches received by the database can be stored in a two
dimensional array shown in Figure.

MINING SPATIO – TEMPORAL ASSOCIATION RULES
Consider a user in region ri at time t. What is the probabil-
ity p that this user will appear in region rj by time t+T? We
denote such a spatio-temporal association rule with the syn-
tax (ri,T,p)⇒rj. Inferring such rules is important in practice.
For example, in mobile computing, they can identify trends

112 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 2 | Issue : 3 | December 2012 | ISSN - 2249-555XReseaRch PaPeR

in user movements and lead to better allocation of antenna
bandwidth to cater for potential network congestions in the
near future. Additional constraints, such that ri and rj must
be within certain distance, may also be specified. Then, the
number of objects that appear in ri at time t and then appear
in rj during [t+1, t+T] equals n1+n2-n3. This idea naturally
leads to a simple brute-force algorithm for discovering the
association rules, checks all possible instances of (ri, rj, t).

OBJECTIVES AND CONTRIBUTIONS
As described in the previous section, spatial indexing struc-
tures do not serve the purpose well enough when they have
to deal with spatio-temporal data. Spatio-temporal indexing
structures described in the previous section are mechanisms
that are designed to deal with continuously changing data
points. Another class of spatio temporal indexing structures
are designed to deal with moving object data that changes
only discretely. Such data can be indexed efficiently by sim-
ply coalescing indexing structures like R Trees, Quad Trees
etc with those useable for versioning data, like B Trees and
B+ Trees. Examples of such indexing structures include MVB
Tree. These indexing structures are easy to implement, man-
age and have their own class of applications. One such appli-
cation under study as part of this project work is aggregation
querying on moving objects data.

AGGREGATION QUERIES
Given a region (a bounding box), a spatial aggregation query
is expected to retrieve aggregated data about all moving ob-
jects in the specified region. For some applications of mov-
ing object databases, this class of queries is very important.
Traffic data analysis is one important example. As a motivat-
ing example, consider the query “find the road segments
with the heaviest traffic near the centre” or, given a medical
emergency, “which is the hospital that can be reached fast-
est, given the current traffic situation” [aR Tree ref]. In both
cases, we are interested only in the number of cars and not
the specific details. Now, if the positions of the cars and line
segments representing roads are indexed in two different R
Trees, the join could be time-consuming. Answering a query
such as “give me the traffic for every road segment in an area
of 1km radius around each hospital” would require a spatial
join between the indexing structures. Such a join is inherently
costly. Also, analytical/aggregation queries in the spatio-tem-
poral context are different from those involving non-spatial
attributes in the sense that there is very little apriori

knowledge about the grouping hierarchy. In addition to
some predefined regions, a user may request groupings from
an arbitrary grid in a selected window.

INDEXING FOR AGGREGATION QUERIES
Aggregation R Tree[ref] is an example of an indexing structure
that is designed to index spatial aggregate data. This struc-
ture however does not deal too well with temporal attributes
of data points. In fact, it uses mechanisms like individual in-
cremental updates (IIU) and batch incremental updates (BIU)
to make moving object updates more efficient. A ‘temporal
lifting’ of such a structure is to add versioning support using
B trees that represent versions. A similar yet more advanced
structure for spatio-temporal aggregation queries has been
proposed, called the aRB Tree[ref]. The aRB or the aggregate
R- B- Tree uses ‘sketches’ to represent moving object data
in an R Tree. The details of the aRB Tree have already been
dealt with in the previous section.

IMPLEMENTING THE aRB TREE
As described in the previous sections, the aRB Tree uses the
R- and B- Trees to maintain spatial and temporal aggregation
data respectively. We attempt to implement this structure
and design algorithms for answering a decent range of ag-
gregation queries. It is shown in the following sections that,
user queries that ask for aggregations from arbitrary group-
ings can efficiently answered using the indexing structure.
The implementation also aims at eliminating certain inherent
drawbacks of using R Trees in this indexing structure. Also, for
range queries involving time, we suggest the use of B+ Trees
instead of B Trees. Also, the indexing structure introduces the
concept of sketches for representing moving objects data.
This idea is actually very interesting and useful in applica-
tions that look for frequent moving patterns. For example, a
query that asks for the region at time ‘t ‘ with the maximum
population density can be easily answered using algorithms
on the aRB Tree that deal just with the sketch bit strings. The
same is the case with a query that asks for say, ‘What is the
percentage population in-flow for Electronics City during the
time interval (t1, t2)’? Algorithms to a host of similar queries
will be described and demonstrated in the sections to follow.

IMPLEMENTATION OF QUERYING FEATURES USING aRB TREE
This section introduces various querying features implement-
ed by the team as part of this project. The detailed algo-
rithms will follow in the next chapter of the report. The sim-
plest aggregation query in this data structure would be to ask
for the total number of objects in a given bounding box/area
during a given time interval (t1, t2). This would simply involve
operations like ‘OR’ing of and counting the number of 1’s in a
given bit string, similar to the algorithm explained in the pre-
vious section. The more complex queries could involve ask-
ing for the time of day when a given bounding box observed
its maximum population density. This query is equivalent to
asking a moving object database, “When during the day, did
Electronics City’s population peak?”

The advantage of using aRB trees with sketches lies in the fact
that it houses enough granularity to answer queries like “When
did the bus with Route Number 111 enter R T Nagar?”, despite
the fact that aRB Tree is a structure designed to support aggre-
gation queries. Another interesting query could ask for “List all
fighter planes that passed through area - Id BG235”.

CONCLUSION
The proposed aRB Tree is implemented using the C lan-
guage and various querying features are demonstrated as
discussed in the previous sections. The structure despite
being designed keeping aggregations in mind, serves really
well for queries requiring higher granularities. We discover
a few drawbacks of the structure proposed in [ref] and sug-
gest implementation mechanisms to overcome them. Also,
as mentioned the section 2, structures like R*- trees and B+
Trees would be better options for implementing the struc-
ture. Spatio-temporal pattern mining is also a much more
simplified task using sketches in aRB Trees.

INDIAN JOURNAL OF APPLIED RESEARCH X 113

Volume : 2 | Issue : 3 | December 2012 | ISSN - 2249-555XReseaRch PaPeR

REFERENCE [1] Markus Schneider Ralf HartmutGting. Moving objects databases. Morgan Kaufmann Publishers, 2005 | [2]
Dieter Pfoser, Christian S. Jensen, and YannisTheodoridis. Novel approaches in query processing for moving

object trajectories. In VLDB '00: Proceedings of | the 26th International Conference on Very Large Data Bases, pages 395{406,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. | [3] SimonasSaltenis, Christian S. Jensen, Scott T. Leutenegger,
and Mario A. Lopez.Indexing the positions of continuously moving objects. In SIGMOD '00: | Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages 331{342, New York, NY, USA, 2000.ACM. | [4] http://www.
postgresql.org/docs/8.4/static/gist.html | [5] Spatio-Temporal Aggregation Using Sketches Yufei Tao, George Kollios, Jeffrey
Considine, Feifei Li, Dimitris Papadias | [6] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP Operations in Spatial Data
warehouses.

