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ABSTRACT Cloud computing has great potential of providing robust computational power to the society at reduced 
cost. It enables clients with limited computational resources to outsource their large computation workloads to the cloud, 
and economically enjoy the massive computational power, bandwidth, storage, and even appropriate software that can be 
shared in a pay-per-use manner. Despite the tremendous benefits, security is the primary obstacle that prevents the wide 
adoption of this promising computing model, especially for clients when their confidential data are consumed and produced 
during the computation. Treating the cloud as an intrinsically insecure computing platform from the viewpoint of the cloud 
clients, the design mechanisms that not only protect sensitive information by enabling computations with encrypted data, 
but also protect clients from hateful behaviors by enabling the validation of the computation result. Such a method of 
general safe calculation outsourcing was newly shown to be viable in theory, but to propose mechanisms that are practically 
capable remains a very challenging problem
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I. INTRODUCTION
Cloud Computing presents well-situated on-demand net-
work access to a shared group of configurable computing 
resources that can be quickly organized with great effective-
ness and negligible management operating cost [1]. The 
benefit of cloud model is computation outsourcing, where 
the computational authority of cloud clients is no longer 
restricted by their resource-constraint devices. By outsourc-
ing the workloads into the cloud, clients could enjoy the 
precisely unrestricted computing resources in a pay-per-use 
mode without consigning any large capital expenditures in 
the procurement of hardware, software or the operational. 
In spite of the tremendous profit, outsourcing computation 
to the commercial community cloud is also reluctant clients’ 
direct control over the systems that put away and produce 
their data during the computation, which predictably brings 
in new security apprehensions and challenges towards this 
talented computing replica [2]. 

The outsourced calculation workloads often surround sen-
sitive data, such as the financial records, research data, or 
identifiable health data etc. To battle against illegal informa-
tion leakage, responsive data have to be encrypted before 
outsourcing so as to provide end-to-end data confidentiality 
guarantee in the cloud and beyond. Nevertheless, ordinary 
data encryption methods in essence 

avoid cloud from performing any significant operation of the 
underlying plaintext data making the computation over en-
crypted data a very hard difficulty [3]. The outfitted details 
inside the cloud are not obvious enough to clients [4]. As a 
result, there do exist various motivations for cloud server to 
behave faithlessly and to return wrong results, i.e., they may 
act beyond the traditional semi-honest model. For example, 
for the computations that need a large amount of computing 
resources, there are huge monetary incentives for the cloud to 
be “lethargic” if the clients cannot tell the exactness of the out-
put. Besides, possible software virus, hardware failures might 
also influence the quality of the computed results. The cloud is 
basically not secure from the viewpoint of clients. Without pro-
viding a method for secure computation outsourcing, i.e., to 
protect the responsive input and output data of the workloads 
and to authenticate the honesty of the computation result, 
it would be hard to expect cloud clients to turn over control 
of their workloads from local machinery to cloud exclusively 
based on its financial savings and resource flexibility. 

For practical kindness, such a design should advance and 
ensure that clients perform fewer amounts of process fol-

lowing the mechanism than completing the computations by 
themselves directly. Otherwise, there is no point for clients 
to request help from cloud. Although some graceful designs 
on secure outsourcing of scientific computations, sequence 
comparisons, and matrix multiplication etc. have been pro-
posed in the work, it is still hardly possible to apply them 
directly in a practically efficient manner, especially for large 
problems. In those advances, either important cloud-side 
cryptographic computations [6, 7 and 8] or multi-round inter-
active practice executions [5], or enormous communication 
difficulties are involved. In brief, practically well-organized 
mechanisms with instant practices for secure computation 
outsourcing in cloud are still absent [10]. Focusing on busi-
ness computing and optimization tasks, in this work, the ef-
ficient mechanisms for secure outsourcing of Linear Program-
ming (LP) computations are studied. LP is an algorithmic and 
computational device which detains the first order effects 
of a variety of system parameters that should be optimized, 
and is vital to engineering optimization. It has been exten-
sively used in various engineering disciplines that examine 
and optimize real-world systems, such as packet routing, flow 
control, etc. Because LP computations require a considerable 
amount of computational power and usually involve confi-
dential data, The explicit decomposition of the LP computa-
tion outsourcing into public LP solvers running on the cloud 
and private LP parameters owned by the client are proposed. 

The flexibility of such decomposition allows us to discover 
higher-level concept of LP computations than the general 
path representation for the practical effectiveness. This high-
er level demonstration allows us to apply a set of efficient 
privacy-preserving problem conversion methods, including 
matrix multiplication and affine mapping, to convert the orig-
inal LP problem into some arbitrary one while protecting the 
sensitive input/output data. One vital benefit of this higher 
level trouble conversion method is that existing algorithms 
and devices for LP solvers can be directly recycled by the 
cloud server. Although the general mechanism clear at circuit 
level, e.g. [9], can even allow the client to cover the fact that 
the outsourced computation is LP, the more severe security 
measure than necessary would greatly influence the effec-
tiveness are forced. To authenticate the computation result, 
the truth that the result is from cloud server solving the con-
versed LP problem is operated. In general, the basic duality 
theorem together with the piece-wise creation of supporting 
LP problem to derive a set of essential and enough situations 
that the correct result must fulfilled. Such a method of result 
explanation can be very well-organized and acquires close-
to-zero additional operating cost on both client and cloud 
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server. With properly verified result, client can use the secret 
conversion to map back the desired solution for his original 
LP problem. The involvements are summarized as follows: 

II. PROBLEM STATEMENT
The calculation outsourcing architecture engages two dis-
similar entities, as shown in Figure 1. the cloud client, who 
has large amount of costly LP problems to be outsourced to 
the cloud; the Cloud Server (CS), which has important com-
putation resources and provides effectiveness computing 
services, such as hosting the public LP solvers in a pay-per-
use manner. The client has a large-scale LP problem Φ to 
be solved. However, due to need of computing resources, 
like processing power, memory, and storage etc., can’t carry 
out such classy computation locally. Thus, the client alterna-
tives to CS for solving the LP computation and influences 
its computation capacity in a pay-per-use manner. Instead 
of directly sending original problem φ, the client first uses a 
secret key K to map Φ into some encrypted version ΦK and 
outsourcers problem ΦK to CS. It uses its public LP solver to 
get the answer of ΦK and provides a correctness proof, but 
it is supposed to learn nothing or little of the sensitive data 
contained in the original problem descriptionφ. After receiv-
ing the solution of encrypted problem ΦK, the client should 
be able to first verify the answer via the affixed proof. If it’s 
right, it uses the secret K to map the output into the desired 
reply for the original problem Φ. The security threats faced 
by the computation representation primarily come from the 
cruel behavior of CS. 

The CS may behave beyond “honest-but- inquiring”, i.e. 
the semi-honest model that was implicit by many earlier 
researches, either because it means to do so or because it 
is compromised. The CS may be persistently interested in 
analyzing the encrypted input sent by the client and the en-
crypted output produced by the computation to learn the 
sensitive data as in the semi-honest model. In addition, CS 
can also behave faithlessly or intentionally damage the com-
putation, e.g. to lie about the result to save the computing 
resources, while eager not to be caught at the same time. 
Finally note that the communication channels between each 
cloud server and the client is authenticated and dependable, 
which can be achieved in practice with little overhead. These 
verification handshakes are absent in the following appear-
ance. An optimization problem is usually formulated as a 
mathematical programming problem that looks for the val-
ues for a set of decision variables to minimize the purpose of 
function representing the cost subject to a set of constraints. 
For LP, the aim of the function is an affine function of the 
decision variables, and the restrictions are a system of linear 
equations and inequalities. Since a restriction in the form of a 
linear inequality can be articulated as a linear equation by in-
troducing a non-negative floppy variable, and a free decision 
variable can be expressed as the difference of two non-neg-
ative auxiliary variables, any LP problem can be expressed in 
the following standard form minimize cT x subject to 

Ax = b, x ≥ 0. (1)
Here x is an N × 1 vector of decision variables, A is an M × N 
matrix, and both c and b are N × 1 vectors. It can be assumed 
further that M ≤ N and that A has full row rank; otherwise, 
extras rows can always be eliminated from A.

In this work, a general study indicates minimizing cT x subject 
to 

Ax = b, Bx ≥ 0. (2)
In Eq. (2), the non-negative requirements in Eq. (1) by requir-
ing that each component of Bx to be non-negative, where B 
is an N × N non-singular matrix, i.e. Eq. (2) de-generates to 
Eq. (1) when B is the identity matrix. Thus, the LP problem 
can be defined via the tuple Φ = (A, B, b, c) as input, and the 
solution x as output are replaced.

III. THE PROPOSED METHODOLOGY
The LP outsourcing method provides a complete outsourc-
ing solution for not only the privacy protection of problem 

input or output, but also its efficient result checking. An over-
view of secure LP outsourcing design framework and discuss 
a few basic techniques and their demerits, which leads to 
a stronger problem transformation design utilizing affine 
mapping. The effective result verification by leveraging the 
duality property of LP is discussed. Finally, the full scheme 
description is given. Before presenting the details of our pro-
posed mechanism, the study in this section a few basic tech-
niques and show that the input encryption based on these 
techniques along may result in an unsatisfactory mechanism. 
However, the analysis will give insights on how a stronger 
mechanism should be designed. Note that to simplify the 
presentation, the cloud server honestly performs the compu-
tation, and defer the discussion on soundness.

A. Hiding inequality constraints (B): 
The client cannot convert the inequality conditions in the 
similar way as used for the equality constraints. This is be-
cause for an random invertible matrix Q, Bx ≥ 0 is not equiva-
lent to QBx ≥ 0 in general. To hide B, we can leverage the 
fact that a feasible solution to Eq. (2) must satisfy the equality 
constraints. To be more specific, the feasible regions defined 
by the following two groups of constraints are the same.

where _ is a randomly generated n×m matrix in K satisfying 
that |B ′ = |B − _A| 6= 0 and _b = 0. Since the condition _b 
= 0 is largely underdetermined, it leaves great flexibility to 
choose _ in order to satisfy the above conditions.

B. Hiding objective functions c and value cT x: 
Given the widely application of LP, such as the estimation of 
business annual revenues or personal portfolio holdings etc., 
the information contained in objective function c and optimal 
objective value cT x might be as sensitive as the constraints 
of A, B, b. Thus, they should be protected, too. To achieve 
this, we apply constant scaling to the objective function, i.e. 
a real positive scalar γ is generated randomly as part of en-
cryption key K and c is replaced by γc. It is not possible to 
derive the original optimal aim value cT x without knowing γ 
first, since it can be mapped to any value with the same sign. 
While hiding the objective value well, this method does leak 
structure-wise information of objective function c. namely; 
the number and position of zero-elements in c are not pro-
tected. Besides, the ratio between the elements in c is also 
preserved after constant scaling.

C. Summarization of basic techniques 
The basic techniques would choose a secret key K = (Q, λ, γ) 
and encrypt the input tuple Φ into ΦK = (A′, B′, b′, γc), which 
gives reasonable strength of problem input hiding. Also, 
these techniques are clearly correct in the sense that solving 
ΦK would give the same optimal solution as solving Φ. How-
ever, it also implies that although input privacy is achieved, 
there is no output privacy. Essentially, it shows that although 
one can change the constraints to a completely different 
form, it is not necessary the feasible region defined by the 
constraints will change, and the adversary can leverage such 
information to gain knowledge of the original LP problem. 
Therefore, any secure LP method must be able to not only 
encrypt the constraints but also to encrypt the feasible region 
defined by the constraints.

D. Enhanced Techniques via Affine Mapping
To enhance the security strength of LP outsourcing, we must 
be able to change the feasible region of original LP and at 
the same time hide output vector x during the problem input 
encryption. To encrypt the feasible region of Φ by applying 
an affine mapping on the decision variables x is proposed. 
This design principle is based on the following observation: 
ideally, randomly transform the feasible area of problem Φ 
from one vector space to another and keep the mapping 
function as the secret key, there is no way for cloud server to 
learn the original practicable area information. Further, such 
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a linear mapping also serves the important purpose of output 
hiding, as illustrated below.

Let M be an N × N non-singular matrix and r be an N × 1 
vector. The affine mapping defined by M and r transforms 
x into y = M−1(x + r). Since this mapping is an one-to-one 
mapping, the LP problem Φ in Eq. (2) can be expressed as 
the following LP problem of the decision variables y.

minimize cT My − cT r

subject to AMy = b + Ar

BMy ≥ Br.
Using the basic techniques, this LP problem can be further 
transformed to

minimize γcT My

subject to QAMy = Q(b + Ar),
BMy − λQAMy ≥ Br − λQ (b + Ar).

One can denote the constraints of above LP via Eq. (3):

If the following conditions hold, |B′| 6= 0,

_b′ = Br, and b + Ar 6= 0, (4)

then the LP problem _K = (A′,B′, b′, c′) can be formulated via 
Eq. (5), minimise

c′T y subject if to A′y = b′, B′y ≥ 0. (5)

 
IV. PERFORMANCE ANALYSIS
A. Theoretic Analysis 
1) Client Side Overhead: According to our method, client 
side computation transparency consists of key generation, 
problem encryption operation, and result verification, which 
corresponds to the three algorithms KeyGen, ProbEnc, and 
ResultDec, respectively. Because KeyGen and Result-Dec 
only require a set of random matrix generation as well as 
vector-vector and matrix-vector multiplication, the computa-
tion complexity of these two algorithms are upper bounded 
via O(N2). Thus, it is straight-forward that the most time-
consuming operations are the matrix-matrix multiplications 
in problem encryption algorithm ProbEnc. Since M ≤ N, the 
time complexity for the client local computation is thus as-
ymptotically the same as matrix-matrix multiplication, i.e., O 
(N2) for some 2 < ρ ≤ 3. In our experiment, the matrix multipli-
cation is implemented via standard cubic-time method, thus 
the overall computation operating cost is O (N3). 

2) Server Side Overhead: For CS, its only computation trans-
parency is to solve the encrypted LP problem ΦK as well as 
generating the result proof, both of which correspond to 

the algorithm ProofGen. If the encrypted LP problem ΦK 
belongs to normal case, cloud server just solves it with the 
dual optimal solution as the result proof, which is usually 
readily available in the current LP solving algorithms and in-
curs no additional cost for cloud If the encrypted problem 
ΦK does not have an optimal solution, additional auxiliary 
LP problems can be solved to provide a proof. Because for 
general LP solvers, phase I method is always executed at first 
to determine the initial feasible solution, proving the auxil-
iary LP with optimal solutions also introduces little additional 
overhead. Thus, in all the cases, the computation complexity 
of the cloud server is asymptotically the same as to solve a 
normal LP problem, which usually requires more than O (N3) 
time. Evidently, the client will not spend more time to encrypt 
the problem and solve the problem in the cloud than to solve 
the problem on his own. Therefore, in theory, the proposed 
mechanism would allow the client to outsource their LP prob-
lems to the cloud and gain great computation savings. The 
asymmetric speedup captures the client efficiency gain via LP 
outsourcing. The cloud efficiency captures the overall com-
putation cost on cloud introduced by solving encrypted LP 
problem, which should ideally be as closer to 1 as possible.

B. Experiment Results
The practical efficiency of the proposed secure and verifiable 
LP outsourcing scheme with experiments are assessed. We 
implement the proposed mechanism including both the cli-
ent and the cloud side processes in Matlab and utilizes the 
MOSEK optimization through its Mat lab interface to solve 
the original LP problem Φ and encrypted LP problem ΦK. 
Both client and cloud server computations in our experiment 
are conducted on the same workstation with an Intel Core 2 
Duo processor running at 1.86 GHz with 2 GB RAM. In this 
way, the practical efficiency of the proposed mechanism can 
be assessed without a real cloud environment. We also ig-
nore the communication latency between the clients and the 
cloud for this application since the computation dominates 
the running time as evidenced by our experiments. Our ran-
domly generated test benchmark covers the small and medi-
um sized problems. All these benchmarks are for the normal 
cases with feasible optimal solutions. Since in practice the 
infeasible cases for LP computations are very rare, we do not 
conduct those experiments for the current preliminary work 
and leave it as one of our future tasks. 

V. CONCLUSIONS
In this work, the difficulty of securely outsourcing LP com-
putations in cloud computing, and provide such a practical 
method design which fulfills input/output privacy, cheating 
flexibility, and efficiency are formalized. By unambiguously 
decomposing LP computation outsourcing into public LP 
solvers and private data, our method design is able to ex-
plore appropriate security tradeoffs via higher level LP com-
putation than the general circuit illustration. The problem 
conversion methods that enable clients to secretly transform 
the original LP into some random one while protecting sensi-
tive input/output information are developed. Duality inspect 
theorem derives a set of necessary and sufficient situation for 
result verification. Such a cheating flexibility design can be 
bundled in the overall method with close-to-zero additional 
operating cost. Both security analysis and experiment results 
display the immediate practicality of the proposed method. 
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