
Volume : 1 | Issue : 12 | September 2012 ISSN - 2249-555X

INDIAN JOURNAL OF APPLIED RESEARCH X 45

Keywords : Housing Finance, Housing Finance Stocks, Risk and return, Volatality of stocks.

Research Paper

Web Crawler: An Intelligent Agent Through
Intellect Webbot

*Shailesh A. Patel ** Dr. Jayesh M. Patel

*Asst. Prof., BCA Programme,A.M. Patel Institute of Computer Studies, Ganpat Vidyanagar

**Associate Prof., MCA Programme,A.M. Patel Institute of Computer Studies,Ganpat Vidyanagar

To completely crawl the World Wide Web, web crawler takes more than a week period of time. This paper focuses on role of
agents in providing intelligent crawling over the web. The role of building a proxy server at application level is clearly discussed.
The web pages need to be cached for providing better response time. Within this time, there are changes occurred to various
pages, so it cannot always be able to provide the updated content to the user. Intellect Webbot will reduce the latency taken
for search results by enabling various agents, providing more updated links to the user, also the adeptness to view users'
bookmarks anywhere through our system. Moreover, this system has distributed intelligent agents, which is used to index the
web pages in the server with the updated information. The actual scenario is the user going to give the keyword in terms of
query to this system.
The system contains several agents such as Link repository agent, Regional crawler agent, link maintenance agent, and
bookmark agent. The results from this system are the list of URLs (Universal Resource Locator) along with description about
that page. The link in the result page is called context link i.e., the text around a hyperlink within a web page. Forming the
context link, based on the user given keyword and the related link that are available in the link repository, should be made and
that would be included in the result page as a list of context links. Unlike other search engines, crawler provides context links to
the user, according to the users' pursuit. This work is accomplished by storing the users' name along with their search history
in the server.
The dynamic web cache management scheme is being tested across 30 nodes and its results are discussed. The proposed
intelligent crawler is compared with LLIand dynamic web cache scheme and results are discussed. The results achieved from
these experiments confirm the efficiency and adaptability of the proposed crawler

ABSTRACT

Computer Science

INTRODUCTION
The number of web pages available in the Internet is tremen-
dously growing day to day and since this is the case, search-
ing relevant information in the Internet is hard task. Usually,
searching information in the World Wide Web can be done
by searching the list of links crawled and sorted based on
type of the web page or contents of the web page. Today, the
main problems of search engines are the size and the rate
of change in the web page daily. Web crawler is the process
used by web search engines to index pages from the web.
Web crawler takes approximately more than a week to crawl
all the web pages in Internet once. The changes to the web
pages are very frequently occurred today, so providing more
relevant information for a specific request by a search engine
is a challenging issue.

Intellect Webbot will overcome from above mentioned problems.
Each agent will perform its own task in order to crawl the web
information. The user needs to give their keyword for search, the
crawler will search the links related with the help of link resolver
agent to identify the Universal Resource Locators (URLs) avail-
able in the link repository. Intellect Webbot helps to crawl the web
pages available in the Internet using distributed intelligent agents,
which is used to index the web pages in the server with the up-
dated information and produce the effective list of links as a result
based on quality metrics such as speed, quality information, or
related information.

A crawler is a program that retrieves and stores pages from the
Web, commonly for a Web search engine. A crawler often has to
download hundreds of millions of pages in a short period of time
and has to constantly monitor and refresh the downloaded pages
[3]. Context of a hyperlink or link context is defined as the terms
that appear in the text around a hyperlink within a Web page.

EXISTING METHODS
Latent Linkage Algorithm (LLI) can be used for efficiently
retrieving web pages with lesser response time [17]. The
system can be built an efficient hyper link - based Algorithm
to find the relevant links for a given web page(URL). The al-
gorithm is advantaged with linear Algebra Theories to reveal
deeper relationship among the web page to identify relevant
links more precisely and efficiently.

Whenever the client request the web page the request will be
forwarded to the server. The server will forward it to the web
server via ISP and DNS. The response from the web server
will be given to the server, which in turn forwarded to the cli-
ent and the data from the web server will be stored as cookie
in the web browser for later use. An HTTP cookie (usually a
simple cookie) is a packet of information sent by a web server
to the web browser and then sent back by the browser each
time it accesses that server. The existing server’s uses data
structures and BLOB data base management system.

PROPOSED SYSTEM
In the proposed system we implement a proxy server, which
makes use of randomized algorithm that combines the benefit
of both RR scheme and utility function. This avoids the need
for data structure. RR scheme is used to evict the documents
randomly. The utility function assigns to each page a value
based on -recentness of use -frequency of use -size of page
-cost of fetching.

The second step is to build an intelligent webrobot using
agents for different functionalities. We have implemented LLI
algorithm and a model for dynamic web caching and com-
pared the results with proposed intelligent webrobot.

Volume : 1 | Issue : 12 | September 2012 ISSN - 2249-555X

46 X INDIAN JOURNAL OF APPLIED RESEARCH

Intellect Webbot: Analysis & Design
The architecture of web crawler should be broadly divided
into two architectures, one is cyclic architecture as in Fig. 1
and another one is is detailed architecture as in Fig. 2. First
step is the collecting pages from the World Wide Web, and
then indexing all the pages. If any search keyword given,
crawler will be able to give a list of relevant links by search-
ing in this index. The following Fig. 1 clearly explicates the
architecture.

Initially, crawler collects or indexes all the pages from World
Wide Web, based on the downloaded information, crawler
prepares database called link repository. Repository has
the type of web page with corresponding link identification
number. If a user request some information related to a
specific topic crawler will search based topic given by the
user.

	

Fig1.

Fig2.

If result is not sufficient for the user, it will get results from
link repository. Figure 2 clearly depicts the working of Intel-
lect Webbot.

Difficulties in Crawling
There are two important characteristics of the Web that
generate a scenario in which web crawling is very difficult:
its large volume and its rate of change. The large volume
implies that the crawler can only index a fraction of the Web
pages within a given time, so it needs to prioritize work.
The high rate of change implies that by the time the crawler
is indexing the last pages from a site, it is very likely that
new pages have been added to the site, or that pages have
already been updated or even deleted. Figure 2 depicts the
detailed architecture of the web crawler.

Based on the link id crawler will retrieve the full Name and
description of the web page with the help of DNS Extractor.

INTELLECT WEBBOT ARCHITECTURE
The architecture contains four agents such as Link repository
agent, Regional crawler agent, Link maintenance agent, and
Bookmark agent. Figure 3 depicts the proposed architecture;
double lined rectangle denotes the proposed agents in our
architecture.

Role of Agents
The role of agents is to provide the faster indexing of web
pages in link repository by implementing distributed web
crawlers. By enabling agent control we store the user search
history and bookmark results.

Link Repository Agent
This agent runs on the server, which collects the list of key-
words from WebPages stored in webserver and indexes it in
the link repository. This will have the list of keywords and cor-
responding URL. It ignores the unwanted phrases and prepo-
sitions, etc. while accumulating the keywords

Regional Crawler Agent
The regional crawler agent is responsible for the grouping
of the recently searched keywords and the corresponding
URLs for a particular user. These details will be updated in
the server whenever the user logs out of our system. Once
the user enters a keyword and initiates search operation, the
request is sent to the cache. The matching process will be
done in cache (client) to list the recently fetched results. If not
found, the request is sent to link, repository to list the results.
After returning the results the user log is updated with recently
searched information. The cache is maintained by using the
LRU algorithm.

Link Maintenance Agent
The Link Maintenance Agent is responsible for the periodic updat-
ing process. It will periodically check for updates in the web server
and sustains the update on links lost and links redirected. It will
send the links present in the cache to the server and stores the
updated content in the user log.

Bookmark Agent
The bookmark agent is responsible for maintaining the book-
marked URLs by the user. The bookmarked URLs are stored cor-
responding with the username in the server. Whenever the user
gets the resultant links, user can bookmark the URL and the user
can access the bookmarked URLs anywhere through our system.

CRAWLING POLICIES
The behavior of a web crawler is the outcome of a combina-
tion of the following policies:
• A selection policy that states which pages to download.
• A re-visit policy that states when to check for changes to

the pages.
• A politeness policy that states how to avoid overloading

websites.

Volume : 1 | Issue : 12 | September 2012 ISSN - 2249-555X

INDIAN JOURNAL OF APPLIED RESEARCH X 47

• A parcillelization policy that states how to coordinate distrib-
uted web crawlers.

Selection Policy

As the size of the web is large, even very famous and large
search engine covers the portion of the Internet. Not even one
search engine searches more than 16% of web content. It is
highly desirable that, from that crawled portion, finding rel-
evant information. A good selection policy is required in order
to do the best crawling task.

This requires a metric of importance for prioritizing Web pag-
es. The importance of a page is a function of its intrinsic qual-
ity, its popularity in terms of links or visits, and even of its URL
(the latter is the case of vertical search engines restricted to
a single top-level domain, or search engines restricted to a
fixed Website).

Najork and Wiener [12] performed an actual crawl on 328
million pages, using breadth-first ordering. They found that a
breadth-first crawl captures pages with high Pagerank early
in the crawl (but they did not compared this strategy against
other strategies). The explanation given by the authors for
this result is that “the most important pages have many links
to them from numerous hosts, and those links will be found
early, regardless of on which host or page the crawl origi-
nates”.

Abiteboul et al. [16] designed a crawling strategy based on
an algorithm called OPIC (On-line Page Importance Compu-
tation). In OPIC, each page is given an initial sum of “cash”
which is distributed equally among the pages it points to. It is
similar to a Pagerank computation, but it is faster and is only
done in one step.

Boldi et al. [14] used simulation on subsets of the Web of 40
million from the .it domain and 100 million pages from the
WebBase crawl, testing breadth-first against random order-
ing and an omniscient strategy. The winning strategy was
breadth-first, although a random ordering also performed
surprisingly well. One problem is that the WebBase crawl is
biased to the crawler used to gather the data.

The importance of a page for a crawler can also be expressed
as a function of the similarity of a page to a given query. This
is called “focused crawling”. The main problem in focused
crawling is that in the context of a Web crawler, we would like
to be able to predict the similarity of the text of a given page
to the query before actually downloading the page. A possible
predictor is the anchor text of links; this was the approach
taken by Pinkerton in a crawler developed in the early days
of the Web.

Re-visit Policy
The Web has a very dynamic nature, and crawling a fraction
of the Web can take a long time, usually measured in weeks
or months. By the time a Web crawler has finishedits crawl,
many events could have happened. The events are charac-
terized as creations, updates and deletions.

Creations: When a page is created, it will not be visible on the
public Web space until it is linked, so we assume that at least
one page update - adding a link to the new Web page - must
occur for a Web page creation to be visible. A Web crawler
starts with a set of starting URLs, usually a list of domain
names, so registering a domain name can be seen as the act
of creating a URL.

Updates: Page changes are difficult to characterize: an up-
date can be either minor, or major. An update is minor if it is at
the paragraph or sentence level, so the page is semantically
almost the same and references to its content are still valid.
On the contrary, in the case of a major update, all references
to its content are not valid anymore.

Deletions: A page is deleted if it is removed from the public

Web, or if all the links to that page are removed. Note that
even if all the links to a page are removed, the page is no
longer visible in the Web site, but it will still be visible by the
Web crawler. It is almost impossible to detect that a page has
lost all its links, as the Web crawler can never tell if links to
the target page are not present, or if they are only present in
pages that have not been crawled.

Cost functions: From the search engine’s point of view, there
is a cost associated with not detecting an event, and thus
having an outdated copy of a resource. The most used cost
functions are freshness and age.

Freshness: This is a binary measure that indicates whether
the local copy is accurate or not.

Age: This is a measure that indicates how outdated the local
copy.

IMPLEMENTATION
Using Java and swing concept, the working model for our pa-
per has been developed. In the working model, it is assumed
there are two or more websevers present.

Link repository agent crawls each and every web page, up-
holds the keywords, and store it in link repository (a table is
considered as link table).

Regional crawler agent groups the recently searched key-
words and the corresponding URLs for a particular user (a
table considered as userlog). The table is maintained by us-
ing the LRU algorithm.

Link maintenance agent does the periodic updating process.
It will periodically check for updates in the Webserver and
sustains the update on links lost and links redirected in link
repository as well as user log.

Bookmark agent maintains the bookmarked URLs by the
user. The bookmarked URLs are stored corresponding with
the username in the server (a table considered asbookmark
table). Whenever the user clicks the bookmark button, that
particular URL is stored in bookmark table.

In order to make a search, the user needs to login to the serv-
er so as to maintain the user details and search log. Each and
every query along with the keyword identified by an agent
should be stored in query cache. This query cache will re-
ferred for each search made by that particular user in order
to avoid the increased latency, provided if the same search
keyword is given.

RESULTS AND DISCUSSIONS
The proposed system was tested with a test bed of 30 users
trying to access similar links:

The system utilizes the bandwidth and directs request and
retrieves the webpages using Proxy server software that is
designed for use. Using the proposed intelligent crawler the
response time for accessing keywords in WebPages is listed
below:

Key word Server
Response
in Time
(ms)

Cache re-
sponse (size
in bytes)

Web Site

Vista 203 16 www.microsoft.
com

Operator
in C

172 16 www.cs.umd.
edu

Operator
in C

63 16 www.cprogram-
ming.com

Volume : 1 | Issue : 12 | September 2012 ISSN - 2249-555X

48 X INDIAN JOURNAL OF APPLIED RESEARCH

Yahoo 4.56 26 www.yahoo.com

Gmail 4.2 16 www.google.
com

Vlb 2.4 27 www.vlb.edu

Infoline 2.1 100 www.indianinfo-
line.com

Cricket 3.5 120 www.cricinfo.
com

The response time in comparison with LLI [17] and dynamic
web cache management using randomized web cache man-
agement schemes [18] is shown below:

Key word
Intel-
ligent
Crawler
(ms)

Dynamic
Web
Cache
Scheme

LLI (Latent
Linkage Algo-
rithm)

Vista 203 205 210

Operator in C 172 190 180

Operator in C 63 70 70

Yahoo 4.56 5 5.3

Gmail 4.2 4.4 4.5

Vlb 2.4 3 3.2

Infoline 2.1 2 3

The above result presented has driven for the following
conclusions:
1.	 The web page retrieval time is dependent on the re-

sponse time of the servers being accessed like yahoo,
google etc.

2. The web page content like text, image, video also affects
the performance of the proposed model.

3. Since proxy server software does most of actions of man-
aging request, security part is presented at the applica-
tion level.

4. Dynamic web caching based on past eviction times is not
always constant and is dependent on the network band-
width.

SUMMARY
We have presented new agent based architecture for crawl-
ing the web and to provide efficient search results to the user
which will work by satisfying the quality metrics such as qual-
ity or relevant information should be provided at acceptable
speed. It will reduce the time for crawler to index web pages
from the Internet in a distributed fashion. Also, refreshing to
the content of crawler will be quickly done by having various
agents, so that crawler will help to produce the more recent
links to the user.

The above depicted graph (Fig. 4) clearly shows how the re-
sponse from the cache as well as the server is differentiated.
Moreover, the graph depicts the retrieval time from the cache
and the server corresponding to the bandwidth used by the
user.

Normally, crawler takes more than a week time to cover some
part of the World Wide Web. By implementing Intellect Web-
bot model, crawler takes less than a week time since it is
distributed and also it always give a most recent link as a
result for the search.

FUTURE WORK
This paper describes a new architecture for agent based in-
telligent crawler. In order to clearly explain the architecture,
working model for Intellect Webbot architecture has also
been shown. Implementing any crawler in a real time is very
tough task than the designing work. It requires getting various
permissions from the owners of theweb servers administra-
tors (not for all web servers). It needs huge storable node for
keeping the details of the user and the URLs.

The future enhancement to this work will be developing and
implementing Intellect Webbot by enabling agents such as
link repository agent, regional crawler agent, link mainte-
nance agent, bookmark agent in a distributed fashion. The
model can be extending for incorporating attacks for large re-
pository of web pages stored for a large organization.

REFERENCES

Alex Homer, Dave Sussman, Rob Howard, Brian Francis, Karli Watson and Richard Anderson, Professional ASP.NET1.1 from Wrox Publishing. | [2]	 A l e x L . G .
Hayzelden and Rachel A. Bourne, Agent Technology for Communication Infrastructures, John Wiley & Sons, 1999. | [3]Birukov. A, Enrico Blanzieri and Paolo Giorgini,
Implict: An Agent Based Recommendation System for Web Search. AAMAS'05. | [4]Carlos Castillo, Effective Web Crawling, Technical Publication. Department of
Computer Science -University of Chile, November 2004. | [5]Gautam Pant and PadminiSrinivasan, Link Contexts in Classifier-Guided Topical Crawlers, /£££ Transaction
on Knowledge and Data Engineering, Vol. 18 No. 1, pp. 81-92, January 2006. | [6]Junghoo Cho, Crawling the Web: Discovery and Maintenance of Large Scale Web
Data, Technical Publication, November 2001. | [7] Junghoo Cho, Hector Garcya-Molina and Lawrence Page, Efficient Crawling Through URL Ordering, Proceedings of
the Seventh Conference on World Wide Web, Brisbane, Australia, April 1998. | [8]Liren Chen and Katia Sycara, Web Mate: A Personal Agent for Browsing and Searching,
Transaction on Internet Technology, pp. 1-16, September 1997. | [9]	Mathias Bauer et al., Instructible Information Agents for Web Mining, /£££ Transaction on Data Mining,
Vol. 10, No. 5, pp. 23-33, October 1999. | [10]Marc Najork and Janet L. Wiener, Breadth-first Crawling Yields High-quality Pages, Proceedings of the Tenth Conference on
World Wide Web, Hong Kong, pp. 114-118, May 2001, Elsevier Science. | [11]Marina Buzzi. Cooperative Crawling, Proceedings of the First Latin American Web Congress
(LA-WEB 2003). | [12]Paolo Boldi, Bruno Codenotti, Massimo Santini and SebastianoVigna, Ubi Crawler: A Scalable Fully Distributed Web Crawler, /£££ Transaction
on Internet Technology, pp. 1-14. | [13]Paolo Boldi, et al., "Do Your Worst to Make the Best: Paradoxical Effects in Pagerank Incremental Computations", Vol. 3243,
Springer Publ., Lecture Notes in Computer Science, pp. 168-180, October 2004. | [14]Ricardo Baeza-Yates, Carlos Castillo and Felipe Saint-Jean. Web Dynamics, Clip.
Web Dynamics, Structure and Page Quality, pp. 93-109, Springer, 2004. | [15]Serge Abileboul, Mihai Freda and Gregory Cobena, Adaptive On-line Page Importance
Computation. Proceedings of the Twelfth International Conference on World Wide Web, pp. 280-290, ACM Press, 2003. | [16]http://en.ivikipedia.org/ | [17]JingyuHou and
Yanchun Zhang, Effectively Finding Relevant Web Pages from Linkage Information, /£££ Transactions on Knowledge and Data Engineering, Vol. 15, No. 4, July/August
2003. | [18]	 BalajiPrabhakaran, "Efficient Randomized Web-cache Replacement Schemes Using Samples From Past Eviction Time", IEEE/ACM Traits. Networking, Vol.
10, pp. 441-453, August 2002. |

