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ABSTRACT In this paper, a numerical algorithm for solving fuzzy initial value problem based on Seikkala’s derivative of 
fuzzy process by the fourth order Runge-Kutta methods based on Contraharmonic Mean(RKCoM) is proposed 

in detail. The algorithm is illustrated by solving a linear and non linear fuzzy initial value problems(IVPs) using trapezoidal 
fuzzy number. It is also shown that in the proposed method convergence order is O(h4). The results show that the proposed 
methods suits very well to solve linear and non linear fuzzy initial value problems.

1. Introduction
Fuzzy set theory is a tool that makes possible to describe 
vague and uncertain notions. Fuzzy Differential Equation 
(FDE) models have wide range of applications in many 
branches of engineering and in the field of medicine. The 
concept of a fuzzy derivative was first introduced by Chang 
and Zadeh [8], later Dubois and Prade [9] defined the fuzzy 
derivative by us in Zadeh’s extension principle and then fol-
lowed by Puri and Ralescu [23]. Fuzzy differential equations 
have been suggested as a way of modelling uncertain and 
incompletely specified systems and were studied by many 
researchers [11, 12, 15]. The existence of solutions of fuzzy 
differential equations has been studied by several authors 
[3, 4]. It is difficult to obtain exact solution for fuzzy differen-
tial equations and hence several numerical methods where 
proposed [17]. Abbasbandy and Allahviranloo [2] developed 
numerical algorithms for solving fuzzy differential equations 
based on Seikkala’s derivative of fuzzy process [25]. Runge-
Kutta method for fuzzy differential equation has been stud-
ied by many authors [1, 22]. Kanagarajan and Sampath [13, 
14] developed a numerical algorithm for solving fuzzy differ-
ential equations by using Runge-Kutta method and Runge-
Kutta Nystrom method of order three. Nirmala and Chenthur 
Pandian [21] studied numerical solution of fuzzy differential 
equation by fourth order Runge-Kutta method with higher 
order derivative approximations. Evans and Yaacub [10] have 
introduced the fourth order Runge-Kutta method based on 
Centroidal Mean (RKCeM) formula for first order IVPs. Muru-
gesan et al. [19] compared fourth order RK methods based 
on variety of means and concluded that RKCeM works very 
well to solve system of IVPs and they also developed [20] a 
new embedded RK method based on AM and CeM. The ap-
plicability of the RKCeM : Division by zero, Error in RKCeM 
formulae, and Stability analysis are discussed by Murugesan 
et al. [18].

In this paper, the fourth order RKCoM is applied to solve 
fuzzy initial value problems and established that the approxi-
mate solution of the proposed fourth order RKCoM almost 
coincides with the exact solution. 

The structure of the paper is organized as follows: In Sec-
tion 2, some necessary notations and definitions of fuzzy set 
theory, fuzzy differential equations, fourth order Runge-Kutta 
formula based on Contraharmonic Mean to solve IVPs are 
given. In Section 3, Fuzzy initial value problem is defined. 
In section 4, solving numerically the fuzzy initial value prob-
lems by the fourth order Runge-Kutta method based on the 
proposed method is discussed and gives the convergence 
result. The proposed algorithm is illustrated by an example 
in section 5 and the conclusion is in section 6.

2. Preliminaries
Definition 2.1. A fuzzy number is a fuzzy set u : 



→ [0, 1]

which satisfies 

1. u is upper semicontinuous.
2. u(x) = 0 outside some interval [c, d],
3. there are real numbers a, b for which c ≤ a ≤ b ≤ d such 

that
3.1. u(x) is monotonic increasing on [c, a],
3.2. u(x) is monotonic decreasing on [b, d],and 
3.3. u(x) = 1, a ≤ x ≤ b.

Definition 2.2. A fuzzy number u in parametric form is a pair  
                     which satisfies the following require-
ments:

1. ( )u r is a bounded left continuous monotonic increasing 

function over [0, 1],

2.    is a bounded left continuous monotonic decreasing 

function over [0, 1], and 

3. ( )u r ≤ ( )u r , 0 ≤ r ≤ 1.

A crisp number α is simply represented by 

Definition 2.3.
A trapezoidal fuzzy number u, is defined by four real numbers 
k < l  < m < n where the base of the trapezoidal is the interval 
[k, n] and its vertices at x= l , x=m. Trapezoidal fuzzy number 
will be written as u = (k, l , m, n). The membership function for 
the trapezoidal fuzzy number u = (k, l , m, n) is defined as the 
following :

 

and one can have :

 (1) u > 0 if k > 0 (2) u > 0 if l > 0;(3) u > 0 if m > 0; and (4) u 
> 0 if n > 0.

Let E be the set of all upper semi continuous normal convex 
fuzzy numbers with bounded r−level intervals. It means that 
is v E∈ then r-level set

( ( ),  ( )),  [0,  1],u u r u r r= ∈

( )u r

( )

,  

1        ,  

,  

x k k x l
l k

u x l x m
x n m x n
m n

− ≤ ≤ −
= ≤ ≤
 − ≤ ≤

−
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is a closed bounded interval which is denoted by

1 2[ ] [ ( ),  ( )].rv v r v r=

Lemma 2.1. Let v, w ∈ E and s a scalar, then for r ∈ (0, 1]

Definition 2.4. For arbitrary fuzzy numbers ( ( ),  ( )),u u r u r=  and 

( ( ),  ( )),v v r v r=  the Quantity  (2.1)

is the distance between u and v. 

The function D (u, v) is a metric on E1. This metric function 
is equivalent to the one used by Puri and Ralescu [23] and 
Kaleva [11]. 

Definition 2.5. A function 1:f E→  is called a fuzzy function. If 

for arbitrary fixed 0t ∈and ∈>0 δ>0 such that

   (2.2)

exists, f is said to be continuous.

Suppose that 1:y I E→  is a fuzzy function. The parametric form 

of y (t) is represented by [ ] [ ]1 2 
( ) ( ,  ),  ( ,  ) ,

r
y t y t r y t r=  t∈ I, r ∈ (0, 1], (2.3) 

where I is a real interval. The Seikkala [25] derivative ( )y t′ of a 

fuzzy function y (t) is defined by

[ ] [ ]1 2 
( ) ( ,  ),  ( ,  )

r
y t y t r y t r′ ′ ′= , t∈ I, r (0, 1], (2.4) 

provided that this equation defines a fuzzy number. 

2.1. The fourth order Runge-Kutta method based on Con-
traharmonic Mean
Consider the initial value problem 

       (2.5) 

The basis of all Runge-Kutta method is to express the differ-
ence between the value of y at 1+nt  and nt  as

  (2.6)

where for i = 1, 2, …, m, wi’s are constants and

  (2.7)

Equations (2.7) is to be exact for powers of h through mh , 

because it is to be coincident with Taylor series of order m. 
Therefore, the truncation error Tm, can be written as

        (2.8)

For ( , ),y f t y′ =  the fourth order Runge-Kutta method using 

Contraharmonic Mean can be written in the form

[ ] 
{ \ ( )  },  0    1,

r
v s v s r r= ≥ < ≤

{ }( ,  ) sup0 1 max ( ) ( ) ,  ( ) ( ) ,D u v r u r v r u r v r = ≤ ≤ − − 

0 0( ( ),  ( ))t t D f t f tδ− < ⇒ <∈

( , ( )),  a t b

y(a) =

dy f t y t
dt

α

= ≤ ≤

i

m

i
inn kwyy ∑

=
+ =−

1
1

1

1
. ,  

i

i n i n ij j
i

k h f t c h y h a k
−

=

 
= + + 

 
∑

).( 21 ++ += mm
mm hOhT γ

  (2.9)

where means includes Contraharmonic Mean(CoM), which 
involves ,  1 4ik i≤ ≤ , 

where,

  

   (2.10)

where the parameters for 

Contraharmonic Mean :  

  (2.11) 

The fourth order formulae based on Runge-Kutta scheme us-
ing Contraharmonic Mean is as follows:

Contraharmonic Mean : 
2 2 2 22 2

2 3 3 41 2
1

1 2 2 3 3 43n n
k k k kk khy y

k k k k k k+

 + ++
= + + + + + + 

     (2.12)

bttta N =<<<= ...10  and iiN
ab tth −== +

−
1

)(    (2.13)

The local truncation error (LTE) of the methods are given by 
the following: 

RKCoM:
5

4 4 3 3 2 2 2 6
y yyyy y yyy yy y yy

h      - 378ff  - 8f f  + 4 f f f  - 648f f  - 303 f f f    O (h )
23040CoMLTE  = +    (2.14)

Theorem 2.1. Let ( ,  )f t y  belongs to C4[a, b] and let it’s partial 

derivatives are bounded and assume that there exists L, M, 
positive constants such that

 , 

then in terms of the error bound due to Lotkin (see Lambert 
[25], we have a strict upper bound (with respect to y only) as 
in the fourth order Runge-Kutta method based on

Contraharmonic Mean  :  (2.15)

3. Fuzzy Cauchy Problem

Consider the fuzzy initial value problem

         (3.1)

with the grid points  (3.2)

where f is a continuous mapping from R+ × R into R and y0∈

E with r-level sets 

The extension principle of Zadeh leads to the following 
definition of f (t, y) when y = y(t) is a fuzzy number

It follows that

3

1
13n n

i

hy y Means+
=

 
= +  

 
∑

1 ( ,  )n nk f t y=

2 1 1 1(  ,    )n nk f t a h y a h k= + +

3 2 3 2 1 3 2( ( ) ,      )n nk f t a a h y a h k a h k= + + + +

4 4 5 6 4 1 5 2 6 3( ( ) ,  (       ))n nk f t a a a h y a h k a h k a h k= + + + + + +

3 3 31 1 1
1 2 3 4 5 62 8 8 4 4 2,  ,  ,  ,  ,  .a a a a a a−= = = = = =

( ,  )f t y M< 1 ,  .
i j i j

i j j
f L i j m

t y M

+ +

−

∂
< + <

∂ ∂

5 4 6
1 1

1333( ) ( )
23040i i CoMy t y LTE h ML O h+ +− = ≤ +

,y(0)
Tt0 ; ))(,()(

0y
tytfty

=
≤≤=′

0  1 2[ ] [ (0;  ),  (0;  )],  (0,  1],ry y r y r r= ∈

( ,  )( ) sup{ ( ) \ ( ,  )},  f t y s y s f t s Rτ τ= = ∈
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where

                             (3.3)

Theorem 3.1. Let f satisfy

    

where g : R+ × R+→R+ is a continuous mapping such that r 
→ g(t, r) is non decreasing and the initial value problem  
               (3.4) 

has a solution on R+ for u0 > 0 and that u(t) ≡  0 is the only 

solution of (3.4) for u0 = 0. Then the fuzzy initial value prob-
lem (3.1) has a unique solution.

Proof: see [25].

4. The fourth order RK methods for solving Fuzzy Initial 
Value Problems 

4.1. The Fourth Order Runge-Kutta method based on 
Contraharmonic Mean

We consider fuzzy initial value problem (3.1) with the grid 
points (3.2)

Let the exact solution [Y (t)]r = [Y1(t; r), Y2(t; r)] is approxi-
mated by some [y(t)]r = [y1(t; r), y2(t; r)].

From (2.6), (2.7) we define

  (4.1)

where the wi’s are constants and

  (4.2)

and

1, 1 1 2( ,  ( ;  )) min{  ( ,  ) \ [ ( ;  ),  ( ;  )]}k t y t r h f t u u y t r y t r= ∈

1, 2 1 2( ,  ( ;  )) max{  ( ,  ) \ [ ( ;  ),  ( ;  )]}k t y t r h f t u u y t r y t r= ∈

2, 1 1, 1 1, 22( ,  ( ;  )) min{  ( ,  ) \ [ ( ,  ( ;  )),  ( ,  ( ;  ))]}hk t y t r h f t u u z t y t r z t y t r= + ∈

2, 2 1, 1 1, 22( ,  ( ;  )) max{  ( ,  ) \ [ ( ,  ( ;  )),  ( ,  ( ;  ))]}hk t y t r h f t u u z t y t r z t y t r= + ∈

  (4.3)

where in the fourth order Runge-Kutta method based on 
Contraharmonic Mean 

  (4.4)

Define

 1 2[ ( ,  )] [ ( ,  ;  ),  ( ,  ;  )],  (0,  1],rf t y f t y r f t y r r= ∈

1 1 2

2 1 2

( ,  ;  ) min{ ( ,  ) \ [ ( ),  ( )]}
( ,  ;  ) max{ ( ,  ) \ [ ( ),  ( )]}

f t y r f t u u y r y r
f t y r f t u u y r y r

= ∈
= ∈

( ,  ) ( ,  ) ( ,  ),  0,  ,  .f t v f t v g t v v t v v R− ≤ − ≥ ∈

0( ) ( ,  ( )),  (0) .u t g t u t u u′ = =

4

1 1 1 , 1
1
4

2 1 2 , 2
1

( ;  ) ( ;  )  ( , ( ;  )),

( ;  ) ( ;  )  ( ,  ( ;  )),

n n i i n n
i

n n i i n n
i

y t r y t r w k t y t r

y t r y t r w k t y t r

+
=

+
=

− =

− =

∑

∑

 , 1 , 2[ ( ,  ( ;  ))] [ ( ,  ( ;  ),  ( ,  ( ;  ))],  1,  2,  3,  4i r i ik t y t r k t y t r k t y t r i= =

1

, 1 1 , 1
1

1

, 2 2 , 2
1

( , ( ;  ))  ( ,  ( )  ( , ( ;  ))),

( ,  ( ;  ))  ( ,  ( )  ( ,  ( ;  ))),

i

i n n n i n ij j n n
j

i

i n n n i n ij j n n
j

k t y t r h f t c h y t a k t y t r

k t y t r h f t c h y t a k t y t r

−

=

−

=

= + +

= + +

∑

∑

3, 1 2, 1 2, 22

3, 2 2, 1 2, 22

4, 1

( ,  ( ;  )) min{  ( ,  ) \ [ ( ,  ( ;  )),  ( ,  ( ;  ))]}

( ,  ( ;  )) max{  ( ,  ) \ [ ( ,  ( ;  )),  ( ,  ( ;  ))]}
( ,  ( ;  )) min{  ( ((1/ 4) ( 3 / 4) (3 / 2))

h

h

k t y t r h f t u u z t y t r z t y t r
k t y t r h f t u u z t y t r z t y t r
k t y t r h f t

= + ∈

= + ∈

= + + − + 3, 1 3, 2

4, 2 3, 1 3, 2

 ,  ) \ [ ( ,  ( ;  )),  ( ,  ( ;  ))]}
( ,  ( ;  )) max{  ( ((1/ 4) ( 3 / 4) (3 / 2)) ,  ) \ [ ( ,  ( ;  )),  ( ,  ( ;  ))]}

h u u z t y t r z t y t r
k t y t r h f t h u u z t y t r z t y t r

∈

= + + − + ∈

1
1, 1 1 1, 12

1
1, 2 2 1, 22

31
2, 1 1 1, 1 2, 18 8

1
2, 2 2 1, 28

( ,  ( ;  )) ( ;  ) ( ,  ( ;  ))

( ,  ( ;  )) ( ;  ) ( ,  ( ;  ))

( ,  ( ;  )) ( ;  ) ( ,  ( ;  ) ( ,  ( ;  )))

( ,  ( ;  )) ( ;  ) ( ,  ( ;

z t y t r y t r k t y t r
z t y t r y t r k t y t r
z t y t r y t r k t y t r k t y t r
z t y t r y t r k t y t

= +

= +

= + +

= + 3
2, 28

3 31
3, 1 1 1, 1 2, 1 3, 14 4 2

3 31
3, 2 2 1, 2 2, 2 3, 24 4 2

 ) ( ,  ( ;  )))

( ,  ( ;  )) ( ;  ) ( ,  ( ;  ) ( ,  ( ;  ) ( ,  ( ;  ))

( ,  ( ;  )) ( ;  ) ( ,  ( ;  ) ( ,  ( ;  ) ( ,  ( ;  ))

r k t y t r
z t y t r y t r k t y t r k t y t r k t y t r
z t y t r y t r k t y t r k t y t r k t y t r

+

= + − +

= + − +

  (4.5) 

The exact and approximate solutions at tn, 0 ≤ n ≤ N are 
denoted by [Y (tn)]r = [Y1(tn; r), Y2(tn; r)] and [y(tn)]r = [y1(tn; r), 
y2(tn; r)] respectively. The solution is calculated by grid points 
at (2.13).

By (4.1) and (4.5), we have

        (4.6)

We define

  (4.7)

The following lemmas will be applied to show convergence 
of these approximates in theorem 4.6. That is

Lemma 4.1 [17] Let the sequence of numbers  satisfy

for some given positive constants A and B. Then

Lemma 4.2 [17] Let the sequence of numbers, satisfy

for some given positive constants A and B, then denoting

,nnn VWU +=  .0 Nn ≤≤
Then

 

where AA 21+=  and B = 2B.

Let F(t, u, v) and G(t, u, v) be obtained by substituting 
[y(t)]r = [u, v] in (4.5)

  

The domain of F and G is 

K = {(t, u, v) |0 ≤ t ≤ T, −∞ < v < ∞ , −∞ < u ≤ v}.

Theorem 4.1. Let F (t, u, v) and G (t, u, v) belong to C4 (K) 
and let the partial derivatives of F and G be bounded over 

[ ]
2 2 2 2

1, 1 2, 1 2, 1 3, 1

1, 1 2, 1 2, 1 3, 1

2
3, 1

( ,  ( ;  )) ( ,  ( ;  )) ( ,  ( ;  )) ( ,  ( ;  ))
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( ,  ( ;  ))
                       

k t y t r k t y t r k t y t r k t y t r
F t y t r
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k t y t r

+ +
= +

+ +

+
+

[ ]

2
4, 1

3, 1 4, 1

2 2 2 2
1, 2 2, 2 2, 2 3, 2
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+ +
2 2
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y t r
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+
+

+

[ ]
[ ]

1
1 1 1 3

1
2 1 2 3

( ;  ) ( ;  ) ,  ( ;  )
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n n n n

n n n n

Y t r Y t r F t Y t r

Y t r Y t r G t Y t r
+
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≈ +

≈ +
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[ ]

1
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1
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n n n n

n n n n
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+

≈ +

≈ +

1  ,  0 1,n nW A W B n N+ ≤ + ≤ ≤ −

0
1  ,  0 .
1

n
n

n
AW A W B n N
A
−

≤ + ≤ ≤
−

1

1

   max{ ,  } ,

   max{ ,  }
n n n n

n n n n

W W A W V B

V V A W V B
+

+

≤ + +

≤ + +

N.n0 ,
1
1

0 ≤≤
−
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+≤
A
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n

n
n

[ ]
2 2 2 2

1, 1 2, 1 2, 1 3, 1

1, 1 2, 1 2, 1 3, 1

2 2
3, 1 4, 1

3, 1

( ,  u, v) ( ,  u, v) ( ,  u, v) ( ,  u, v)
,  u, v
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K. Then, for arbitrary fixed r, 0 ≤ r ≤ 1, the approximate solu-
tions (4.7) converge to the exact solutions Y1 (t; r) and Y2 (t; 
r) uniformly in t.

Proof: It is sufficient to show

where tN = T. For n = 0, 1,…, N − 1, by using Taylor theorem 
we get

  (4.8)

Let    

  

Hence from (4.7) and (4.8)

Then

for t∈  [0, T] and P > 0 is a bound for the partial derivatives 

of F and G. Thus by Lemma 4.2,

where |U0| = |W0| + |V0|. In particular

5 4 61
1 1 1 3

5 4 61
2 1 2 3

1333( ;  ) ( ;  ) [ ,  ( ;  )] ( )
23040
1333( ;  ) ( ;  ) [ ,  ( ;  )] ( )
23040

n n n n

n n n n

Y t r Y t r F t y t r h ML O h

Y t r Y t r G t y t r h ML O h

+

+

= + + +

= + + +

1 1

2 2

( ;  ) ( ;  ),
( ;  ) ( ;  )

n n n

n n n

W Y t r y t r
V Y t r y t r

= −
= −

5 4 61
1 1 2 1 23

1333{ [ ,  ( ;  ),  ( ;  )] [ ,  ( ;  ),  ( ;  )]} ( )
23040n n n n n n n nW W F t Y t r Y t r F t y t r y t r h ML O h+ = + − + +

5 4 61
1 1 2 1 23

1333{ [ ,  ( ;  ),  ( ;  )] [ ,  ( ;  ),  ( ;  )]} ( )
23040n n n n n n n nV V G t Y t r Y t r G t y t r y t r h ML O h+ = + − + +

}{ 5 4 62
1 3

1333   max  ,   O(h ) 
23040n n n nW W P h W V h ML+ ≤ + + +

}{ 5 4 62
1 3

1333   max  ,   O(h )  
23040n n n nV V P h W V h ML+ ≤ + + +
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4
3
4
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4
3
4
3
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n

n

n Ph
n Ph

n Ph
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W ph U h ML O h

V ph U h ML O h

+ −

+ −

  ≤ + + +     
  ≤ + + +     

Since W0 = V0 = 0, we obtain

 

And if h→0 we get WN→0 and VN→0 which completes the 
proof.

5. Numerical Examples
Example 5.1. Consider the fuzzy differential equation

'( ) ( ),  [0,  1]
(0) (0.8+0.125r,  1.1+0.1r)

y t y t t
y

= ∈
 =

  (5.1) 

The exact solution is given by 

( ; ) [(0.8+0.125r) ,  (1.1+0.1r) ],t tY t r e e=  0 ≤ r ≤ 1.

At t =1 we get 

1 1(1;  ) [(0.8+0.125r) ,  (1.1+0.1r) ],Y r e e=

Table 1 shows that the approximate, exact and error values 
calculated by the fourth order RKCoM method. 

The graphical representation of the calculated and exact val-
ues of the fourth order Runge-Kutta method based on Con-
traharmonic mean using trapezoidal fuzzy number is given 
in figure.1.

( ) ( )

( ) ( )

4
3

4
3

4
3

4
3

1 14 4 54
03

1 14 4 54
03

13331 ( )
15360

13331 ( )
15360

T
h

T
h

N Ph
N P

N Ph
N P

W ph U h ML O h

V ph U h ML O h

+ −

+ −

   ≤ + + +    
  ≤ + + +   

  

4
3

4 4 5

4
3

4 4 5

1333 1 ( )
15360

1333 1 ( )
15360

pT

N

pT

N

eW h ML O h
p

eV h ML O h
p

 
− ≤ +  

 
 

− ≤ +  
 

Table. 1

r t

 FIVPRKCoM4  Exact Error 

y1 y2 Y1 Y2 y1 y2

0 1 2.174628 2.990114 2.174625 2.99011 2.99E-06 4.12E-06

0.2 1 2.242586 2.935748 2.242583 2.935744 3.09E-06 4.04E-06

0.4 1 2.310543 2.881383 2.31054 2.881379 3.18E-06 3.97E-06

0.6 1 2.3785 2.827017 2.378497 2.827013 3.27E-06 3.89E-06

0.8 1 2.446457 2.772651 2.446454 2.772647 3.37E-06 3.82E-06

1 1 2.514414 2.718286 2.514411 2.718282 3.46E-06 3.74E-06

   Figure 1

Example 5.2. Consider the fuzzy differential equation

  (5.2)

The exact solution is given by

 0 ≤ r ≤ 1.

The graphical representation of the calculated and exact val-
ues of the fourth order Runge-Kutta method based on Con-
traharmonic mean using trapezoidal fuzzy number is given 
in figure.2.
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  Figure 2

6. Conclusions
The proposed Fourth Order Runge-Kutta method based on 
Contraharmonic Mean has been applied in this paper for 
finding the numerical solution of fuzzy differential equations. 
In this procedure the fourth order Runge – Kutta method 
based on Contraharmonic mean is applied to solve a linear 
and nonlinear FDEs using the trapezoidal fuzzy number. Tak-
ing into account the convergence order for the proposed 
method, a higher order of convergence )( 4hO is obtained. 
The Comparison of solutions of examples 5.1 and 5.2 from 
the tables and the figures show that the approximate solution 
of the fourth order Runge – Kutta method based on Contra-
harmonic Mean almost coincides with the exact solution 
when taking the step size h to be 0.1 itself. So, the fourth 
order Runge – Kutta method based on Contraharmonic 
Mean suits very well to solve a linear and nonlinear FDEs.
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