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ABSTRACT Owing to the intricate mechanism of high temperature superconductivity the problem of anharmonic effects 
has been investigated with the help of newly developed quantum dynamics of electrons and phonons via an 

almost complete Hamiltonian which comprises of the effects of electrons, phonons and anharmonicities. The investigations 
based on the evaluation double time temperature dependent Green’s function theory of electrons and phonons have been 
kept centralized around the anharmonic effects which is really a very complicated and unresolved problem for a very long 
time. The effects of anharmonicities on width, shift and phonon density of states (PDOS) have been studied. The tempera-
ture dependence of these quantities and that of pairons frequencies has also been discussed in the new framework.

(1) INTRODUCTION
The long pending intricate predicament of anharmonic 
phonon-electron problem, in high temperature supercon-
ductors (HTS) gained heightened interest with time among 
condensed matter physicists with the fact that anharmonici-
ty is responsible for many different properties of solids [1,2]. 
In several proposed mechanisms of HTSC it is always sus-
pected that it is the phonon that helps to join the electrons 
into superconducting pairs. In other words, the dressing of 
electrons with phonons in the form of polarons, bipolarons, 
etc., reinvigorated the concept of attractive interaction 
between electrons (pairons or cooper pairs). Some of the 
remarkable investigations [3,4] reveal that the anharmonic-
ity less than 1% can induce superconductivity even in the 
presence of coulomb repulsion which provoked us to take 
up this exciting issue on new grounds. Further, the effects 
of disorders and defects are well known which drastically 
change the frequency (energy) spectrum of solids may also 
play decisive role in understanding the problem in a wider 
perspective [5,6]. In the present work the problem of PDOS 
of HTS has been investigated the many body quantum dy-
namics of phonons and electrons with the help of double 
time thermodynamic phonon Green’s functions technique. 
During the development of excitation spectra and PDOS, 
two main features are emerged; namely, (i) the temperature 
dependence of PDOS caused due to anharmonicities and 
(ii) the automated presence of pairons responsible for the 
phenomenon of HTSC. 

(2) THE HAMILTONIAN 
To investigate the many body quantum dynamics of phonons 
let us consider an almost complete Hamiltonian of the form 
(BCS type is not considered) [7,8,9]
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where eH , pH , epH , AH  and DH , respectively are unperturbed 

electron-, unperturbed phonon-, electron-phonon-, anhar-
monic (upto quartic terms)-, and defect contributions to the 
Hamiltonian H . In the above equations * ( )q qb b  and ,k kA B  are 

the electron creation (annihilation) and phonon field and mo-
mentum operators, respectively. Q=k+q (k and q being pho-
non and electron wave vectors, respectively) and kg stand for 
electron-phonon coupling coefficient.The symbols 1 2( , ..... )s sV k k k , 

1 2( , )C k k  and 1 2( , )D k k  stand for the anharmonic coupling coeffi-

cients, mass and force constant change parameters, respec-
tively [7,8,9].

(3) THE PHONON GREEN’S FUNCTIONS
In order to obtain the phonon line spectrum,

let us consider the evaluation of double time temperature 
dependent retarded Green’s function

where '( )t tθ − is the Heaviside unit step function.

Double differentiation of equation (2) with respect to t  fol-
lowed by the Fourier transformation yields 
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with 

The second term in equation (3) contains the

hierarchy of higher order of Green’s functions * '
'( ); ( )k k

F t A t  . 
For further simplification we adopt the equation 
motion technique to evaluate the Green’s function * '

'( ); ( )k k
F t A t   

with respect to 't  which enables us to formulate the Green’s 
function ',

( )
k k

G ω  in terms of Dyson’s equation as 

where symbols,                               and '( , , )k kπ ω  stand for 

the zeroth order (unperturbed) Green’s function, response 
function and phonon self energy function respectively and 
are readily obtainable in the form [10] 

where ( )k ω∆  and ( )k ωΓ  describe phonon frequency (energy) 

shift and line width '( , , ) ( ) ( )k kP k k iω ω ω= ∆ − Γ . During the calcula-

tion of response function 268 higher order Green’s functions 
are encountered. The higher order Green’s functions are de-
coupled using the appropriate decoupling scheme [8]. After 
simplification only 39 Green’s functions contribute signifi-
cantly and the rest either vanish identically or have negligibly 
small contribution. The remaining Green’s functions are 
quantum dynamically evaluated via a renormalized electron 
and phonon Hamiltonians as

After appropriate algebraic simplification the Green’s func-
tion takes the form 

where kqω  and kqω  are the renormalized and perturbed mode 

frequency mode frequencies can be readily obtainable in the 
form
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During this process of evaluation of Green’s function the auto 
emergence of pairons (cooper pairs, bipolarons) is encoun-
tered with renormalized pairon frequency given by 

The pairon occupancy ( )cn γ  appearing in above equations 

can be obtained in the form 
1( ) [exp( ) 1] ; ( , ) (18 )c

cn q Q aγγ β ω γ−= − =


This reveals that the renormalized pairon frequency is not a 
simple quantity but depends on temperature and electron 
phonon coupling coefficient and wave vector combinations.

(4) PHONON FREQUENCY WIDTH
The phonon line width is responsible for many different dy-
namical properties of crystalline solids, e.g., the phonon fre-
quency (energy) spectrum, life times and DOS and this can 
be obtained from response function in the following form [9]:
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The superscript ‘c’ on various terms stands for the pairons 
(cooper pairs or bipolarons). Various symbols appearing in 
above equations are defined as follows:

(5) PHONON FREQUENCY SHIFTS
The phonon frequency shift which is the real part of phonon 
Green’s function is given by
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(6) PHONON DENSITY OF STATES        
Using Lehman’s representation the PDOS  is defined as
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Similarly, the non-diagonal contribution to PDOS can be ex-
pressed in the form 

with
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V is the volume of the unit cell and pv  is the velocity of phonon.

(7) RESULTS AND DISCUSSION
Let us carefully inspect the general trends of this formulation. 
The PDOS has been resolved into diagonal and non-diago-
nal components. The non-diagonal part ( )p ndN ω  chiefly emerg-
es due to the presence of impurities and vanishes in case of 
pure crystals. The anisotropic dispersion can be well de-
scribed with the help of disorder and anharmonicity in HTS. 

Here the BCS type Hamiltonian has not been taken but this 
theory presents the evaluation of pairons and appears as a 
salient feature of theory. Every term of PDOS in the present 
theory is found to be temperature dependent via a large 
number of phonon, electron and pairon distribution functions 
like ( ) , ( ), ( )kc qcS N nα

β
ε ε±

±

 . Due to the presence of the terms like 

( )[ , ]sD α
β

ω ω ( , )iD ω ω , 1( , )iD ω ω , 1( , )qQ kΩ ↑ , etc, a large number of peaks 

in the PDOS curves can be predicted which would be con-
firmed in high resolution experiments.

(8) CONCLUSIONS
These investigations presents the general theory and show 
that the localized anharmonic phonon-electron interaction 
is a novel problem in high temperature superconductivity 
studies. Further, this formulation successfully describes the 
evaluation of pairons without considering the BCS type Ham-
iltonian. The pairon frequency, renormalized mode frequency 
and PDOS are found to be heavily influenced by impurity 
concentration, electron-phonon coupling and temperature. 
The temperature dependence of these quantities via various 
distribution functions (occupation numbers) emerges as a 
new feature of the theory and obviously is the consequence 
of the anharmonicities. 
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