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ABSTRACT Field Programmable Gate Arrays (FPGAs) have become predominant platform for large number of designs. 
To with stand faults that occur from different types of errors we need to build an online fault detection model 

and have fault recovery methods. In this paper we present a new technique for FPGA circuits developed by BLRB approach 
for online fault recovery. The methodology in this approach is that the spare is selected which ever spare is near for the 
faulty CLB and replaces structurally and functionally. By selecting the nearest spare the routing path is decreased. 

INTRODUCTION
Field programmable Gate Arrays (FPGAs) are pre-fabricated 
silicon devices that can be electrically programmed in the 
field to become almost any kind of the digital circuit or 
system. Depending upon the requirement a portion of the 
FPGA can be partially reconfigured while the rest of an FPGA 
is still running. Any future updates in the final product can 
be easily upgraded by simple downloading the new applica-
tion bit stream. There are many different FPGA architectures 
available from various vendors for example- Altera [11], Xilinx 
[12]. Although the exact structure of these FPGAs varies from 
vendor to vendor, all FPGAs consist of the three fundamen-
tal components: Logic Blocks, I/O blocks, and the Program-
mable Routing. What comprises of a logic block, and how 
the programmable routing is organized defines the particular 
architecture. A logic block is used to implement the small 
portion of the circuit being implemented using an FPGA. The 
programmable routing is used to make all the required con-
nections among the various logic block and the required con-
nections to the I/O (input/output) blocks.  Software that per-
forms automatic routing has existed for many years. Routing 
terminology includes routing switch, track, routing channel 
etc. Routing in FPGAs consists of wire segments of varying 
lengths which can be interconnected using electrically pro-
grammable switches. Density of logic block used in an FPGA 
depends on the length and number of wire segments used 
for routing. Number of segments used for the interconnec-
tion typically is a tradeoff between density of logic blocks 
used and amount of area used up for routing. The routing 
architecture of an FPGA defines the following features:
1. The length of each routing wire segment (i.e.., how many 

logic blocks a routing wire spans before terminating),
2. Whether each routing switch is a pass transistor or a tri- 

state buffer,
3. Assign each net to a subset of the routing areas using 

global routing.
4. Use a detailed router to select specific wire segments 

and routing switches for each connection.

In this paper we present an efficient path routing method 
using nearest spare for reconfiguration of FPGA. In this ap-
proach first, we determine if the system can continue to work 
correctly in the presence of the located faults. In most of the 
situations this is possible and no reconfiguration is needed. 
If a fault does affect the system function, we determine the 
best alternate configurations that avoid the faulty resources. 
To enable automatic recovery of a device after damage, an 
autonomous BLRB algorithm is implemented and tested.

RELATED RESEARCH 
In this section, a brief description about some techniques for 

tolerating faults in FPGAs is discussed. in this paper, we have 
limited the scope to reflect a few key efforts that provided 
some information for our work. For a more detailed, quan-
titative analysis of different online and offline FT techniques, 
see [2]. Several techniques employ column or row shifting 
[3], [4]. In [3], Hatori et al.introduced a single spare column 
for tolerating faults. They used specialized selector circuitry 
to reconfigure FPGA circuits in the presence of faults. Similar 
to methods used for FT in SRAMs,at least one additional col-
umn of PLB is faulty, its column is eliminated and all functions 
mapped to the columns between the faulty column and the 
closest spare are shifted toward the spare column algorithm 
.Kelly and Ivey use redundancy to bypass faults in applica-
tions mapped to FPGAs [7]. Their FT technique relies on a 
shift method to reconfigure in the presence of faults. They 
incorporate a reconfiguration switch to reconfigure and they 
use normal place and route (PAR) tools for mapping circuits 
to FPGAs. The switch matrix network makes their technique 
more flexible than the column and row techniques in [9] and 
[10]. For an average FPGA utilization or 80%, 20% of the re-
sources should be available for spares. In [8], Cuddapah and 
Corba used Xilinx SRAM-based FPGAs to demonstrate the 
FT capabilities of FPGAs. In their study, they randomly picked 
PLBs to be faulty. They reconfigured the circuit around these 
faults using commercially available PAR tools. The main con-
tributions of their work were an algorithm to determine fault 
coverage (the ability to reconfigure around a given number 
of faults) of a design and a definition of the fault recovery rate 
for any given design implemented in an SRAM-based FP-
GAs. Additionally, they demonstrated that fault recovery was 
feasible on FPGAs by other than modular redundant meth-
ods. Similar to Kelly and Ivey, their method requires some 
unused or spare resources, and the fault tolerance depends 
on how many spares are available. Dutt and Hanchek et al. 
developed a method to increase FPGA yield [9], [10]. Their 
method used node covering and reserved routing resources 
to replace the functionality of faulty PLBs. One row (column) 
of PLBs is reserved for spares. If a PLB in any given column 
(row) was faulty, the functionality of all PLBs in the column 
(row) from the faulty PLB to the spare PLB was shifted toward 
the spare PLB. Spare routing resources were used to elimi-
nate overhead of rerouting the updated circuit placement. 
The main advantage of this method is that it is very fast rela-
tive to reconfiguration time. Since the spare resources have 
already been allocated to cover a limited number of faults, 
the reconfiguration time is linear with respect to the number 
of faults. Like many of the previous methods, the main prob-
lem with this offline technique is the limited number of faults 
that can be tolerated in each column (row). At most, they 
guarantee toleration of one fault per spare row or column. 
This paper is organized as follows section III BLRB approach 
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describing the overall flowchart. In section IV the implemen-
tation part is discussed with explanation at each stage. In 
section V results and discussion

Figure 1: showing the overall implementation of approach

IMPLEMENTATION
In this BLRB (Best left right block) approach when ever any 
fault occurs the fault is replaced by the best near spare that is 
available. The algorithm is explained as follows

IV.1.SEPARATION OF BITS
We get the bit streams from the faulty resource to reconfig-
ure the FPGA. At first the bit streams are separated by inputs, 
outputs and functions. A sample application corresponding 
to a noise filter realized on an evolved circuit is considered. 
The application uses 608 bits as the configuration word for a 
FPGA and has 64 configurable logic blocks (CLBs). The VRC 
decoder gives a 64 bit word as input to represent the active 
and spare CLBs among the 64 CLBS.

IV.2.INTER CONNECTION IDENTIFICTION
In this the CLB number to which the present CLB is connect-
ed is known and in similar way identify for all the CLBs and 
whole structure is known by this way. Once whole structural 
description is identified the spare, active CLBs are known ex-
plicitly. To extract the CLB number to which the present CLB 
is connected at the input side is known by using this formula

CORRECTINGFACTOR + CLB NUMBER=INPUT NUMBER. 
-------- Equation.1

The correcting factor depends up on the FPGA that is se-
lected.

IV.3.SPARE SELECTION

Figure 2: Selection of spare

Finding the best spare from the spares available. Here we 
are finding out the best spare that is suitable for the fault 
.by selecting the nearest spare the interconnection path is 
reduced when compared to selecting any of the available 
spares. And latency is also reduced and reconfiguration is 
done in time and path delay is less by selecting the near-
est spare .by reducing the path delay the time required to 
get the output in time may achieve. If the spare selected is 
not near then the path delay is more and signal from input 
to output is more by this there is considerable delay at the 
final output.

LSpare [t1] = I; RSpare [t2]=I ;

Where I indicates the first spare found near the fault. From 
these two LSpare and RSpare the best CLB is selected and 
given for reconfiguration.

IV.4.RECONFIGURTION OF CLB
Once fault location is known using well known detection 
and diagnosing fault the next step is reconfiguration. The 
reconfiguration is done to the selected spare structurally as 
well as functionally. The fault CLB configuration bits i.e. in-
puts and function bits will be copied to found spare. Now 
left thing is structural connection of the fault CLB connec-
tion to the spare CLB connection. The following are the 
steps for connection

1. Decode the CLB number to which the present CLB inputs 
are connected by using Equ 1.

2. Generate new input bit stream for spare using Equation 
1

3. Generate reconfigured configuration bits by replacing 
new input bit stream and functional bits at spare loca-
tion.

4. Now update the active spare bit stream indicating the 
faulty CLB location. By this from the input stream giv-
en by resource there will be an extra fault added and 
one spare less from available 64 CLB. The autonomous 
restructuring unit recovers the FPGA from its faults by 
replacing the configuration bits of faulty CLBs with the 
configuration bits of spare ones. For example when CLB 
9 is faulty then the CLB 10 is used as a spare to repair 
the fault. The inputs and functions performed by CLB 9 
are mapped into CLB 10. Thus the configuration bits are 
reconfigured autonomously.

V.RESULTS AND DISCUSSION 
In this example randomly some spares and edge spare are 
identified and accordingly some faults are identified and by 
using the BLRB approach the reconfiguration is done and is 
shown in following figures

Figure3: An example of FPGA of 8x8 size. Showing the 
edge CLB and spare and faulty CLB.
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    faulty CLB  

    Spare CLB

   Active CLB

Figure 4: Showing the best possible spares for each fault.

Figure 5: Selected the best spare after applying BLRB al-
gorithm.

Figure 6: After reconfiguration of faulty CLB by selecting spare.

In fig 3 an example of FPGA is taken by selecting few faults 
randomly and spares and edge spares.  After identifying the 
spares and faults the next process is finding the nearest spare 
for the fault identified .From fig 4 we can see the nearest 
spare and the spares identified. By using the BLRB approach 
the nearest spare that is found is shown in fig 5.After finding 
the best spare that is suitable reconfiguration is done to that 

faulty spare .reconfiguration is done structurally and function-
ally to the fault with the help of spare that is shown in fig 6. 

IMPLEMENTATION RESULTS
The results obtained by implementing the algorithm present-
ed in section IV is presented here. In this the method finds 
for best spare that is suitable for reconfiguration that output 
can be seen from fig 11.the algorithm dynamically selects the 
best spare and fault is reconfigured accordingly. The algo-
rithm presented here selects the best spare dynamically 

Figure 7: Input and function identification output

Figure 8: Identifying the active and spares output

Figure 9: Structural identification

Figure 10: finding the best spare from the available spares 
output

Figure 11: Reconfiguration of faulty CLB with spare
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CONCLUSION
In this approach a new approach to reconfigure the faulty 
CLB by the best Spare CLB is presented. This approach can 
work for multiple faults and reconfiguration is done in online. 

By selecting the nearest spare for reconfiguration the path 
between the CLB’s is short even after occurrence of fault. The 
autonomous restructuring circuit is designed to modify the 
configuration word with reduced latency.
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