
INDIAN JOURNAL OF APPLIED RESEARCH X 195

Volume : 3 | Issue : 8 | Aug 2013 | ISSN - 2249-555XReseaRch PaPeR Engineering

A Novel online Fault Reconfiguration of FPGA

B. Harikrishna DR. S. Ravi
Research Scholar, Sathyabama University, Chennai,

India
Professor &Head, Department of Electronics
Engineering, Dr.M.G.R University, Chennai

Keywords BLRB, CLB, FPGA

ABSTRACT Field Programmable Gate Arrays (FPGAs) have become predominant platform for large number of designs.
To with stand faults that occur from different types of errors we need to build an online fault detection model

and have fault recovery methods. In this paper we present a new technique for FPGA circuits developed by BLRB approach
for online fault recovery. The methodology in this approach is that the spare is selected which ever spare is near for the
faulty CLB and replaces structurally and functionally. By selecting the nearest spare the routing path is decreased.

INTRODUCTION
Field programmable Gate Arrays (FPGAs) are pre-fabricated
silicon devices that can be electrically programmed in the
field to become almost any kind of the digital circuit or
system. Depending upon the requirement a portion of the
FPGA can be partially reconfigured while the rest of an FPGA
is still running. Any future updates in the final product can
be easily upgraded by simple downloading the new applica-
tion bit stream. There are many different FPGA architectures
available from various vendors for example- Altera [11], Xilinx
[12]. Although the exact structure of these FPGAs varies from
vendor to vendor, all FPGAs consist of the three fundamen-
tal components: Logic Blocks, I/O blocks, and the Program-
mable Routing. What comprises of a logic block, and how
the programmable routing is organized defines the particular
architecture. A logic block is used to implement the small
portion of the circuit being implemented using an FPGA. The
programmable routing is used to make all the required con-
nections among the various logic block and the required con-
nections to the I/O (input/output) blocks. Software that per-
forms automatic routing has existed for many years. Routing
terminology includes routing switch, track, routing channel
etc. Routing in FPGAs consists of wire segments of varying
lengths which can be interconnected using electrically pro-
grammable switches. Density of logic block used in an FPGA
depends on the length and number of wire segments used
for routing. Number of segments used for the interconnec-
tion typically is a tradeoff between density of logic blocks
used and amount of area used up for routing. The routing
architecture of an FPGA defines the following features:
1. The length of each routing wire segment (i.e.., how many

logic blocks a routing wire spans before terminating),
2. Whether each routing switch is a pass transistor or a tri-

state buffer,
3. Assign each net to a subset of the routing areas using

global routing.
4. Use a detailed router to select specific wire segments

and routing switches for each connection.

In this paper we present an efficient path routing method
using nearest spare for reconfiguration of FPGA. In this ap-
proach first, we determine if the system can continue to work
correctly in the presence of the located faults. In most of the
situations this is possible and no reconfiguration is needed.
If a fault does affect the system function, we determine the
best alternate configurations that avoid the faulty resources.
To enable automatic recovery of a device after damage, an
autonomous BLRB algorithm is implemented and tested.

RELATED RESEARCH
In this section, a brief description about some techniques for

tolerating faults in FPGAs is discussed. in this paper, we have
limited the scope to reflect a few key efforts that provided
some information for our work. For a more detailed, quan-
titative analysis of different online and offline FT techniques,
see [2]. Several techniques employ column or row shifting
[3], [4]. In [3], Hatori et al.introduced a single spare column
for tolerating faults. They used specialized selector circuitry
to reconfigure FPGA circuits in the presence of faults. Similar
to methods used for FT in SRAMs,at least one additional col-
umn of PLB is faulty, its column is eliminated and all functions
mapped to the columns between the faulty column and the
closest spare are shifted toward the spare column algorithm
.Kelly and Ivey use redundancy to bypass faults in applica-
tions mapped to FPGAs [7]. Their FT technique relies on a
shift method to reconfigure in the presence of faults. They
incorporate a reconfiguration switch to reconfigure and they
use normal place and route (PAR) tools for mapping circuits
to FPGAs. The switch matrix network makes their technique
more flexible than the column and row techniques in [9] and
[10]. For an average FPGA utilization or 80%, 20% of the re-
sources should be available for spares. In [8], Cuddapah and
Corba used Xilinx SRAM-based FPGAs to demonstrate the
FT capabilities of FPGAs. In their study, they randomly picked
PLBs to be faulty. They reconfigured the circuit around these
faults using commercially available PAR tools. The main con-
tributions of their work were an algorithm to determine fault
coverage (the ability to reconfigure around a given number
of faults) of a design and a definition of the fault recovery rate
for any given design implemented in an SRAM-based FP-
GAs. Additionally, they demonstrated that fault recovery was
feasible on FPGAs by other than modular redundant meth-
ods. Similar to Kelly and Ivey, their method requires some
unused or spare resources, and the fault tolerance depends
on how many spares are available. Dutt and Hanchek et al.
developed a method to increase FPGA yield [9], [10]. Their
method used node covering and reserved routing resources
to replace the functionality of faulty PLBs. One row (column)
of PLBs is reserved for spares. If a PLB in any given column
(row) was faulty, the functionality of all PLBs in the column
(row) from the faulty PLB to the spare PLB was shifted toward
the spare PLB. Spare routing resources were used to elimi-
nate overhead of rerouting the updated circuit placement.
The main advantage of this method is that it is very fast rela-
tive to reconfiguration time. Since the spare resources have
already been allocated to cover a limited number of faults,
the reconfiguration time is linear with respect to the number
of faults. Like many of the previous methods, the main prob-
lem with this offline technique is the limited number of faults
that can be tolerated in each column (row). At most, they
guarantee toleration of one fault per spare row or column.
This paper is organized as follows section III BLRB approach

196 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 8 | Aug 2013 | ISSN - 2249-555XReseaRch PaPeR

describing the overall flowchart. In section IV the implemen-
tation part is discussed with explanation at each stage. In
section V results and discussion

Figure 1: showing the overall implementation of approach

IMPLEMENTATION
In this BLRB (Best left right block) approach when ever any
fault occurs the fault is replaced by the best near spare that is
available. The algorithm is explained as follows

IV.1.SEPARATION OF BITS
We get the bit streams from the faulty resource to reconfig-
ure the FPGA. At first the bit streams are separated by inputs,
outputs and functions. A sample application corresponding
to a noise filter realized on an evolved circuit is considered.
The application uses 608 bits as the configuration word for a
FPGA and has 64 configurable logic blocks (CLBs). The VRC
decoder gives a 64 bit word as input to represent the active
and spare CLBs among the 64 CLBS.

IV.2.INTER CONNECTION IDENTIFICTION
In this the CLB number to which the present CLB is connect-
ed is known and in similar way identify for all the CLBs and
whole structure is known by this way. Once whole structural
description is identified the spare, active CLBs are known ex-
plicitly. To extract the CLB number to which the present CLB
is connected at the input side is known by using this formula

CORRECTINGFACTOR + CLB NUMBER=INPUT NUMBER.
-------- Equation.1

The correcting factor depends up on the FPGA that is se-
lected.

IV.3.SPARE SELECTION

Figure 2: Selection of spare

Finding the best spare from the spares available. Here we
are finding out the best spare that is suitable for the fault
.by selecting the nearest spare the interconnection path is
reduced when compared to selecting any of the available
spares. And latency is also reduced and reconfiguration is
done in time and path delay is less by selecting the near-
est spare .by reducing the path delay the time required to
get the output in time may achieve. If the spare selected is
not near then the path delay is more and signal from input
to output is more by this there is considerable delay at the
final output.

LSpare [t1] = I; RSpare [t2]=I ;

Where I indicates the first spare found near the fault. From
these two LSpare and RSpare the best CLB is selected and
given for reconfiguration.

IV.4.RECONFIGURTION OF CLB
Once fault location is known using well known detection
and diagnosing fault the next step is reconfiguration. The
reconfiguration is done to the selected spare structurally as
well as functionally. The fault CLB configuration bits i.e. in-
puts and function bits will be copied to found spare. Now
left thing is structural connection of the fault CLB connec-
tion to the spare CLB connection. The following are the
steps for connection

1. Decode the CLB number to which the present CLB inputs
are connected by using Equ 1.

2. Generate new input bit stream for spare using Equation
1

3. Generate reconfigured configuration bits by replacing
new input bit stream and functional bits at spare loca-
tion.

4. Now update the active spare bit stream indicating the
faulty CLB location. By this from the input stream giv-
en by resource there will be an extra fault added and
one spare less from available 64 CLB. The autonomous
restructuring unit recovers the FPGA from its faults by
replacing the configuration bits of faulty CLBs with the
configuration bits of spare ones. For example when CLB
9 is faulty then the CLB 10 is used as a spare to repair
the fault. The inputs and functions performed by CLB 9
are mapped into CLB 10. Thus the configuration bits are
reconfigured autonomously.

V.RESULTS AND DISCUSSION
In this example randomly some spares and edge spare are
identified and accordingly some faults are identified and by
using the BLRB approach the reconfiguration is done and is
shown in following figures

Figure3: An example of FPGA of 8x8 size. Showing the
edge CLB and spare and faulty CLB.

INDIAN JOURNAL OF APPLIED RESEARCH X 197

Volume : 3 | Issue : 8 | Aug 2013 | ISSN - 2249-555XReseaRch PaPeR

 faulty CLB

 Spare CLB

 Active CLB

Figure 4: Showing the best possible spares for each fault.

Figure 5: Selected the best spare after applying BLRB al-
gorithm.

Figure 6: After reconfiguration of faulty CLB by selecting spare.

In fig 3 an example of FPGA is taken by selecting few faults
randomly and spares and edge spares. After identifying the
spares and faults the next process is finding the nearest spare
for the fault identified .From fig 4 we can see the nearest
spare and the spares identified. By using the BLRB approach
the nearest spare that is found is shown in fig 5.After finding
the best spare that is suitable reconfiguration is done to that

faulty spare .reconfiguration is done structurally and function-
ally to the fault with the help of spare that is shown in fig 6.

IMPLEMENTATION RESULTS
The results obtained by implementing the algorithm present-
ed in section IV is presented here. In this the method finds
for best spare that is suitable for reconfiguration that output
can be seen from fig 11.the algorithm dynamically selects the
best spare and fault is reconfigured accordingly. The algo-
rithm presented here selects the best spare dynamically

Figure 7: Input and function identification output

Figure 8: Identifying the active and spares output

Figure 9: Structural identification

Figure 10: finding the best spare from the available spares
output

Figure 11: Reconfiguration of faulty CLB with spare

198 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 8 | Aug 2013 | ISSN - 2249-555XReseaRch PaPeR

CONCLUSION
In this approach a new approach to reconfigure the faulty
CLB by the best Spare CLB is presented. This approach can
work for multiple faults and reconfiguration is done in online.

By selecting the nearest spare for reconfiguration the path
between the CLB’s is short even after occurrence of fault. The
autonomous restructuring circuit is designed to modify the
configuration word with reduced latency.

REFERENCE [1]. John M. Emmert, Charles E. Stroud, and Miron Abramovici, “Online Fault Tolerance for FPGA Logic Blocks”, IEEE Transactions On Very
Large Scale Integration (Vlsi) Systems, Vol. 15, No. 2, February 2007, Pp.No. 216-226. | [2] J. Cheatham, J. M. Emmert, and S. Baumgart, “A

survey of fault tolerant methodologies for FPGAs,” ACM Trans. Des. Autom. Electron.Syst., vol. 11, no. 2, pp. 501–533, Apr. 2006. | [3] F. Hatori et al., “Introducing
redundancy in field programmable gate arrays,” in Proc. IEEE Custom Integr. Circuits Conf., 1993, pp.7.1.1–7.1.4. | [4] S. Durand and C. Piguet, “FPGAs with self-repair
capabilities,” in Proc. ACM Int. Symp. FPGAs, 1994, pp. 1–6. | [7] J. Kelly and P. Ivey, “Defect tolerant SRAM based FPGAs,” in Proc. Int. Conf. Comput. Des., 1994,
pp. 479–482. | [8] R. Cuddapah and M. Corba, Reconfigurable Logic for Fault Tolerance. New York: Springer-Verlag, 1995 | [9] S. Dutt and F. Hanchek, “REMOD: a
new methodology for designing fault-tolerant arithmetic circuits,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol. 5, no. 1, pp. 34–56, Jan. 1997. | [10] F. Hanchek
and S. Dutt, “Methodologies for tolerating logic and interconnect faults in FPGAs,” IEEE Trans. Comput., vol. 47, no. 1, pp.15–33, Jan. 1998. | [11] Altera Inc., Data
Book, 1999. | [12] Xilinx Inc., Data Book, 1999 |

