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ABSTRACT There are many implementing procedures for cryptography to reduce the key length for providing network 
security. In this paper we have taken a new effort to solve this with complex analysis and used very small key 

for better security than ever be assigned. With four stages we conclude the arithmetic and standardization on curves. As 
a first phase, we generate random numbers using blum blum shub generator. After that a finite field is assigned and using 
with this elliptic curve has to be drawn. In which by applying montgomery’s algorithm curve arithmetic and standardization 
is obtained.

I  INTRODUCTION
To reduce the key length and strengthen the security, we 
used to do it with different stages. Generation of random 
number is the first phase . And all the phases are as follows:

A.  Generation of random number
B.  Finding finite field.
C.  Preparation of elliptic curves.
D.  Curve arithmetic and standardization.

From the viewpoint of x-coordinate only arithmetic on ellip-
tic curves, switching between the different phases is quasi 
cost free. We use this observation to speed up Montgom-
ery’s algorithm, reducing the complexity of a doubling step 
from 2M + 2S to 1M + 3S for suitably chosen curve param-
eters. 

A. Generation of random number
Random numbers play an important role in the use of encryp-
tion for various network security applications.

There are many methodologies for generating random num-
bers. But in this we use Blum Blum shub Generator.

Procedures for generating random numbers
First choose two large prime numbers. Let it be p and q that 
both have a reminder of 3 when divided by 4.

That is

p º q º 3 (mod 4)

Prime numbers 7 and 11 satisfy 7=11=3(mod 4)
Let n=p*q =7*11=77
Next choose a random number S such that S is relatively 
prime to n
Consider 73 as S 
That is equivalent to saying that neither p nor q is a factor 
of S.
Then the BBS generator produces a sequence of bits Bi
According to the following algorithm 
x0 =S2 mod n
For i=1 to ¥ 
xi= (xi-1)

2 mod n 
Bi= xi mod 2
Thus the last significant bit is taken at each iteration.
x0=732 mod 77 
x0 =16
x1=162 mod 77= 25

B1= 25 mod 2 =1 

i xi Bi 

0 16 

1 25 1 

The least bits of Bi is considered up to 32-1 bit as a random 
number.

B. Finding finite field
A field  is an algebraic object with two operations: addition 
and multiplication, represented by + and *, although they will 
not necessarily be ordinary addition and multiplication. Us-
ing +, all the elements of the field must form a commutative 
group, with identity denoted by 0 and the inverse of a denot-
ed by -a. Using *, all the elements of the field except 0 must 
form another commutative group with identity denoted 1 and 
inverse of a denoted by a-1. (The element 0 has no inverse un-
der *.) Finally, the distributive identity must hold: a*(b + c) = 
(a*b) + (a*c), for all field elements a, b, andc.

There are a number of different infinite fields, including the 
rational numbers (fractions), the real numbers (all decimal ex-
pansions), and the complex numbers. Cryptography focuses 
on finite fields. It turns out that for any prime integer p and 
any integer n greater than or equal to 1, there is a unique 
field with pn elements in it, denoted GF(pn). (The ``GF’’ stands 
for ``Galois Field’’, named after the brilliant young French 
mathematician who discovered them.) Here ``unique’’ means 
that any two fields with the same number of elements must 
be essentially the same, except perhaps for giving the ele-
ments of the field different names.

In case n  is equal to 1, the field is just the  integers mod p, 
in which addition and multiplication are just the ordinary ver-
sions followed by taking the remainder on division by p. The 
only difficult part of this field is finding the multiplicative in-
verse of an element, that is, given a non-zero element a in Zp, 
finding a-1. This is the same as finding a b such that a*b % p = 
1. This calculation can be done with the extended Euclidean 
algorithm also. 

C. Preparation of elliptic curves
An elliptic curve over real numbers is a set of points (x, y) 
which satisfy an elliptic curve equation y2 = x3 + ax + b; 
where a, b, x, and y are real numbers (Certicom). The elliptic 
curve changes with various choices of a and b. “An elliptic 
curve group over real numbers consists of the points on the 
corresponding elliptic curve, together with a special point O 
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called the point at infinity” (Certicom).

 So how do we perform the addition operation on the points 
of an elliptic curve? You have two points, P and Q on an el-
liptic curve, and P + Q = R. To determine R a line is drawn 
through points P and Q, and the line will intersect the elliptic 
curve at a third point, which is –R. The point –R is then re-
flected in the x-axis to point R. For example:

There are two exceptions where drawing a line through 
points P and Q will provide point –R. The first exception oc-
curs when adding points P and –P, the second occurs when 
doubling point P. Since drawing a line through point P and –P 
will result in a vertical line (which will not cross through the el-
liptic curve at a third point), the point at infinity O is needed. 
By definition, P + (-P) = O, therefore, P + O = P (Certicom). 
Now on to doubling point P. To add P to itself, a tangent 
line to the curve is drawn at the point P. The tangent line will 
intersect the elliptic curve at the point –R, if the y value of P 
is not 0. –R is then reflected into the x-axis to provide R. For 
example:

“If a point P is such that yP = 0, then the tangent line to the 
elliptic curve at P is vertical and does not intersect the elliptic 
curve at any other point. By definition, 2P = 0 for such a point 
P”.

Now how is this done algebraically? P = (x1, y1) and Q = (x2, 
y2), therefore P + Q = R = (x3, y3). x3 = m2 – x1 – x2 and y3 = 
m(x1 – x3) – y1. If P ≠ Q, then m = (y2 – y1) / (x2 – x1), but if P = 
Q, then m = (3x1

2 + a) / (2y1). (Note: m is the slope of the line 
through P and Q).

Since cryptography requires that a group has a finite number 
of points, the finite field of integers modulo a prime number 
is often used. It is not possible to use the graphs of this group 
to “connect the dots” for the geometric relationship, but the 
algebraic formulas have been adapted by performing them 
mod p. Therefore: x3 = m2 – x1 – x2 (mod p) and y3 = m(x1 – x3) 
– y1 (mod p); and if P ≠ Q, then m = [(y2 – y1) / (x2 – x1)] (mod 
p), but if P = Q, then m = [(3x1

2 + a) / (2y1)] (mod p).

Given points P and Q in a group, the elliptic curve discrete 
logarithm problem is to find a number such that Pk = Q, for 
some integer k. The methods for calculating the elliptic curve 
discrete logarithms are less efficient than those for factoring 
or calculating conventional logarithms (RSA Security). Due to 
this, shorter key sizes can be used to provide the same level 
of security as other public-key cryptosystems.

D. Curve arithmetic and standardization
Montgomery’s algorithm 
Aiming for an improved performance of Lenstra’s elliptic 
curve factorization method ,Montgomery developed a very 
efficient algorithm to compute in the group associated to an 
elliptic curve over a non-binary finite field Fq, in which only 
x-coordinates are involved. 

The algorithm also proves useful for point compression in el-
liptic curve cryptography. More precisely, instead of sending 
a point as part of some crypto- graphic protocol, one can 
reduce the communication cost by sending just its x-coordi-
nate. From this, the receiver can compute the x-coordinate 
of any scalar multiple using Montgomery’s method. This idea 
was first mentioned in. 

The type of curves Montgomery considered are of the follow-
ing non-standard Weierstrass type 

MA,B : By2 = x3 + Ax2 + x,  A ∈ Fq \ {±2}, B ∈ Fq \ {0}, 

which is now generally referred to as a Montgomery form. 
His method works as follows. Let P = (x1, y1, z1) be a point 
on M A,B, the projective closure of MA,B, and for any n ∈ 
N write n · P = (xn, yn, zn), where the multiple is taken in the algebraic 
group M A,B, ⊕ with neutral element O = (0, 1, 0). Then the 
following recursive relations hold: for any m, n ∈ N such that 
m = n we have 

xm+n = zm−n ((xm − zm)(xn + zn) + (xm + zm)(xn − zn))2 ,  (ADD) 

zm+n = xm−n ((xm − zm)(xn + zn) − (xm + zm)(xn − zn))2 . 

and 

4xnzn = (xn + zn)2 − (xn − zn)2, 

x2n = (xn + zn)2(xn − zn)2,  (DOUBLE) 

z2n = 4xnzn (xn − zn)2 + ((A + 2)/4) (4xnzn) 

(see also [3]). One can then compute ((xn, zn), (xn+1, zn+1)) 

from 

(x(n div 2), z(n div 2)), (x(n div 2)+1, z(n div 2)+1) 

by one application of (ADD) and one application of (DOU-
BLE), the input of the latter depending on n mod 2. Thus 
approximately log2 n applications of (ADD) and (DOUBLE) 
sufce to recover (xn, zn). Every application of (ADD) has a 
rough time-cost of 3M + 2S, where M is the time needed to 
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multiply two general elements of Fq, and S is the time need-
ed to square a general element (which is typically faster). 
Here we used that z1 = 1 in practice. Every application of 
(DOUBLE) needs 2M + 2S + 1C, where C is the cost of mul-
tiplication of a general element of Fq with a curve constant. 
In this case, the constant is (A + 2)/4 (hence, if A is chosen 
carefully then C may be much less than M). 

II. Conclusion
Elliptic curve cryptosystems have emerged as a promising 
new area in public-key cryptography in recent years,” due 
to the smaller key sizes providing the same level of security 
as other public-key cryptosystems (RSA Security). As far as 
speed is concerned, RSA Security had this much to say: “El-

liptic curve cryptosystems are faster than the corresponding 
discrete logarithm based systems. Elliptic curve cryptosys-
tems are faster than the RSA system in signing and decryp-
tion, but slower in signature verification and encryption.”

While the mathematical calculations on elliptical curves may 
be hard to understand when trying to figure out how this 
cryptosystem works, it is important to realize that the difficul-
ty of the mathematical calculations is what makes this system 
secure. The harder the mathematical problem is to solve, the 
harder it should be for someone to crack the system. Unfor-
tunately, all it takes is time and enough computers working 
before someone cracks it, but by then, there will hopefully be 
more systems that are more secure.


