A Study on Kinematic Analysis of 3-DOF R-R-R Type Manipulator ARM

INTRODUCTION

One of the primary objectives of robotics engineering is to design a manipulator capable of high link accelerations without sacrificing positional accuracy. Precise robotic manipulators were traditionally massive and slow whereas fast ones were light and flimsy, and affected with unwieldy end-effectors vibrations. The performance of robotic manipulators can be achieved by utilizing materials with very high stiffness-to-weight and strength-to-weight ratios, minimize deflection and stress.

Concern of current robotic research has been to develop anthropomorphic (human-like) arms capable of emulating the dexterity, manipulability, and workspace volume and payload-to-weight ratio of a human arm. It would also make teleoperation in space, undersea and in hazardous environments that much easier for the human controller. The advent of composite materials, with very high stiffness-to-weight and strength-to-weight ratios as well as excellent damping properties, have made it possible for robotics engineers to build manipulators with excellent stiffness, strength, damping and low inertia.

Problems Associated with Current Robotic Arms

Most current robotic arms possess poor payload-to-weight ratios, poor damping and lack anthropomorphick manipulability and dexterity. Conventionally, to design a fast-moving arm required that the links have low inertia. Inevitably, this resulted in large end-effector vibrations and long settling times. Conversely, to achieve high positional accuracy required bulky, massive links. Due to the large inertia of the links, these robotic arms cannot move rapidly and require inordinate amounts of power. However, robot researchers the world over have already begun to offer many design solutions to these problems. To achieve the manipulability and dexterity of a human arm, innovative new joint mechanisms have been studied.

The study of Kinematics of manipulators and the machines, which are involves analysis of geometry of motion. Kinematic analysis is of prime importance in design of mechanisms and machines. The kinematic analysis of a mechanism constitutes the determination of the position, velocity and acceleration states of the mechanism. This study of motion involves linear as well as angular position, velocity and acceleration of different points on members of mechanisms.

Design of the Manipulator Arm:

...
nate frames to each of them are attached and then the position and orientation of these frames are used for specifying the links. This scheme is known as the “joint space description.” The other form is called the Cartesian description. Forward kinematics is like defining the position of manipulator links in a base frame. This is done by sequential transformation of the reference frames attached to the links.

Inverse Kinematics

In the inverse kinematics problem the position and orientation of the end-effectors of the manipulator is given, and the exercise is to find the values of joint angles and displacements with which the specified position and orientation of the end-effectors can be attained. The equations formulated for solving the inverse kinematic problem are nonlinear and it’s very difficult to obtain closed form solutions for that. There may be multiple solutions to the problem, and maybe any solution doesn’t exist at all. The solutions of the inverse kinematic problem for manipulators are helpful to define the workspace of manipulators. If solutions exist for a point then it is in the workspace of the manipulator, and if no solution exists then the point is not in the workspace.

Position Analysis

Absolute Cartesian Method

The position analysis of a kinematic chain requires the determination of the joint positions, the position of the centers of gravity, and the angles of the links with the horizontal axis. A planar link with the end nodes A and B is considered in Fig.2. Let (x_A, y_A) be the coordinates of the joint A with respect to the reference frame xoy, and (x_B, y_B) be the coordinates of the joint B with the same reference frame. Using Pythagoras the following relation can be written

\[(x_B - x_A)^2 + (y_B - y_A)^2 = AB^2 = L_{AB}^2 \quad (1.1)\]

Where L_{AB} is the length of the link AB. Let \( \theta \) be the angle of the link AB with the horizontal axis Ox. Then, the slope m of the link AB is defined as

\[m = \tan \theta = \frac{y_B - y_A}{x_B - x_A} \quad (1.2)\]

\[Y = mx + n \quad (1.3)\]

Where x and y are the coordinates of any point on this link. The path of a Point on a Link with General Plane Motion For Fig., the path of point on a Link is calculated as the joint A is in the origin of the reference frame, that is, A=0, \( X_A = 0 \) and \( Y_A = 0 \). The coordinates of the joint B are

\[X_B = ABCOS \theta \quad\text{and}\quad Y_B = ABSIN \theta \quad \text{For} \quad 0 \leq \theta \leq 360^\circ \]

The coordinates of the joint C are \( X_C = X_B + BCOS \theta \quad\text{and}\quad Y_C = Y_B + BCSIN \theta \quad\text{for} \quad 0 \leq \theta \leq 360^\circ \)

Algorithm for the Kinematics

Step 1: Define the reference point, angle of rotation of each link, length of each link.

Step 2: Calculate position vector for reference point \( r_0 \).

Step 3: Calculate the Transformation Matrix for each Link \( T_1, T_2, T_3, ..., T_n \).

Step 4: Calculate the position vector of each link \( T_1r_0, T_2T_1r_0, ..., T_nT_{n-1}r_0 \).

Step 5: Calculate relative angular velocities \( \omega_i = \frac{d\theta_i}{dt} \) and relative angular acceleration \( \alpha_i = \frac{d^2\theta_i}{dt^2} \).

Step 6: Calculate relative linear velocities \( v_i = \frac{dr_i}{dt} = \alpha_i \times r_i \) and relative linear acceleration \( a_i = \frac{d^2r_i}{dt^2} = \alpha_i \times v_i \).

Kinematics Analysis Formulation for 3-DOF 4-Link RRR Type manipulator

![Figure 3 Frame assignment for 3-DOF R-R-R Type Manipulator Arm](image)

The manipulator is shown in the Fig. 4, assumes that all the four links, Link 1, Link 2, Link 3, and Link 4 are cylinder with mass \( m_1, m_2, m_3, m_4 \) respectively at their desired end and link 4 is Rigidly connected with link 3. Link 1, 2, 3, 4 can rotate by angle \( \theta_1, \theta_2, \theta_3 \) respectively. Link 4 is rigidly attached with the Link 3, so for the \( 93 \) degree angle of rotation for Link 3, the Link 4 will automatically gets rotated by \( 93 \) degree \( \theta_4 \). Link4 will act as an anthropomorphic arm will be having a gyroscopic motion with help of the rotation of the link 1, 2, and 3. End point of the Link 4 could be connected with the gripper to grip the object or to perform the scheduled task.

Denavit-Hartenberg (D-H) Parameters:

<table>
<thead>
<tr>
<th>Table (2) (D-H) parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

By using (D-H) convention, the transformation matrices for different locations result in Transformation Matrices.

CONCLUSION:

Methods and techniques of analysis and synthesis of mechanisms necessary to find the position, Velocity and acceleration of end point of link during rotation are discussed. Then, the knowledge will be summarized in preparing algorithm for calculation of kinematic parameters, which was used to derive the kinematic parameters for 3-DOF 4-link RRR type Manipulator Arm using the knowledge of D-H approach. This formulation is used to prepare a MATLAB program for calculation of Torque.

REFERENCE