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ABSTRACT Regression modeling of current status data involves the unknown baseline cumulative hazard function. 
Estimation procedures yields non-smooth curves that complicates the process of understanding the behavior 

of survival function. Here we have proposed a sieve semiparametric maximum likelihood estimation method for the 
proportional hazards model for current status data. We have flexibly parameterized the unknown baseline cumulative hazards 
function using monotone splines. The developed estimation procedure has the advantage of being a computationally 
efficient one to produce smooth estimates of the survival (or hazard) function and regression parameters as well.

1. INTRODUCTION
Survival modeling seeks to obtain the probability of occur-
rence of an event of interest, such as the onset of a disease. 
Usually the onset time is supposed to be known or right cen-
sored. However, many medical and epidemiological investi-
gations capture only the status of an event at the time of ex-
amination; because the time to the event of interest cannot 
be observed exactly. These studies give rise to current status 
or case-1 interval-censored data. Current status data occurs 
in many studies– carcinogenicity, demographical, economet-
rics, epidemiological and reliability[1,2]. An important ex-
ample is the cross-sectional surveys to study the occurrence 
of certain chronic disease which is rather cost-effective than 
long-term follow-ups[2,3]. This motivates our present study 
where we have tried to estimate the hazard of chronic kidney 
disease (CKD) and the effect of its risk factors. 

CKD is a major public health concern of India. The exact 
prevalence of CKD in India is not clear in the absence any 
regular national registry; but a community-based program 
from Chennai and another population-based study from 
Delhi reported the estimates of impaired kidney function to 
be 0.86% and 0.79% respectively[4,5]. We lack maintained 
follow-up data in renal clinics of hospitals in India and also 
long-term population-based follow-ups. Since renal impair-
ment is a chronic condition, the onset time of damage occur-
rence cannot be observed exactly; only the current status of 
renal function is known at the time of examination. 

Survival analyses of current status data received attention 
with the development of various algorithms to compute 
nonparametric maximum likelihood estimates (NPMLE) of 
survival function[6-8]. For analyzing the covariate effects, 
regression models have been proposed under various sem-
iparametric structures[2]. We focus here on the widely used 
proportional hazards (PH) model. It includes an unknown 
baseline cumulative hazards function (CHF) i.e. hazard of the 
event in the absence of covariates. Various methods have 
been proposed for estimating the regression coefficients and 
unknown CHF[9-11]. Huang (1996) developed a profile likeli-
hood-based efficient estimation approach with theoretical re-
sults[12]. However the estimates of baseline CHF from these 
methods are non-smooth and estimation procedures are 
computationally intensive. Non-smoothness of baseline es-
timates can be tackled with a parametric assumption, which 
is very restrictive in practical situations. Hence, the flexible 
parametric models with some finite-dimensional spline func-
tions are widely used to approximate the unknown baseline 
CHF (or survival function). 

In our present study, we propose a semiparametric PH model 
for current status data using cubic monotone splines to ap-
proximate the unknown baseline CHF and to estimate the 
parameters using a sieve estimation procedure. We use our 
proposed model to analyze the simulated CKD data. Section 
2 describes PH models and our proposed model with sieve 
estimation. Section 3 illustrates the simulation study per-
formed to evaluate the proposed method and compare it to 
a likelihood approach. Analyses of CKD data are provided in 
section 4 and concluding remarks are presented in section 5.

2. METHODS
Proportional Hazards Model 
Suppose Yi be the time to event of interest; Ti the examina-
tion (or censoring) time, independent of Yi; and Zi a p x 1 vec-
tor of covariates for ith subject. Denote δi=1 or 0 accordingly 
when ith event time is left censored (Yi ≤ Ti) or right censored 
(Yi ≥ Ti). Given the observed data {(ti, δi, Zi), i=1,2,…,n} and 
assuming non-informative censoring, the likelihood for cur-
rent status data is  

( ) [ ]( ) [ ]{ }1
0

0

, ( ; ) 1 ( ; ) ii
n

i i i i
i

L S S t Z S t Z
δδβ −

=

= −∏   
(1)

Here, S(.;Zi) is the survival function. Let L(.;Zi) denote the 
CHF of ith subject such that S(.;Zi) = exp( –L(.;Zi)). 

Under PH assumption, the effect of covariate Z on the cumu-
lative hazard of occurrence of the event by the examination 
time t can be modeled as

Ʌ(t; Zi) = Ʌ0(t)exp(–Zi’β) (2) 

Here, Ʌ0(t) is unspecified nondecreasing baseline CHF. So, 
the log-likelihood is 
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Eq.(3) includes the infinite-dimensional nuisance parameter 
L0, which cannot be eliminated using partial likelihood as in 
the case of right censoring. So the maximum likelihood esti-
mates (MLE) of β and L0 have to be derived simultaneously 
by maximizing the full log-likelihood (3) over (β, L0). Since 
l(β, L0) is concave in β (or L0) for any fixed L0 (or β), profile-
likelihood procedure of Huang (1996) can be applied[12]. 
However the estimation of βs along with nonparametric 
profiling of L0 is computationally quite intensive. Also the 
non-smoothness of the NPMLEs of L0 further complicates the 
process of understanding the behavior of the survival (or haz-
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ard) function. Therefore, we propose a sieve estimation pro-
cedure that involves approximating an infinite-dimensional 
parameter space by a series of finite dimensional functions.

Sieve Maximum Likelihood Estimation Using Cubic Mono-
tone Splines Smoothing
If we flexibly parameterize L0 in (2) by a linear span of some 
known basis functions, then the log-likelihood (3) can be 
thought as sieve log-likelihoods as defined in Geman and 
Hwang[13]. Then, maximization of these sieve log likelihoods 
with respect to β and L0 in the linear span would produce 
the sieve MLEs of (β, L0). Since the linear span consists of 
finite number of basis functions, the dimensionality of the 
optimization problem reduces easing the numerical difficul-
ties. The sieve method is a powerful tool in semiparametric 
survival regression for current status data. It has been used 
mainly to approximate the baseline CHF or survival func-
tion in various survival models for current status data[14-16]. 
A popular choice for basis functions is splines. Splines are 
piecewise polynomial functions that are combined linearly to 
approximate an unknown function on an interval.

Here, we propose to model the baseline CHF, Ʌ0(t) flexibly 
using a linear combination of monotone splines (M-splines). 
An M-spline basis of order k is defined as [17]
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where t1,…, tm is a sequence of increasing knots in (0, ∞). To 
each M-spline, we associate an (Integrated) I-spline basis as
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Each M-spline is a piecewise polynomial ok degree k-1, and 
each associated I-spline is a piecewise polynomial of degree 
k. M-splines are nonnegative, and so associated I-splines 
are monotonically nondecreasing. Therefore a linear span 
of I-spline basis functions can be used to approximate any 
monotonic function just by constraining the coefficients to 
be positive. 

Let Tmin and Tmax be the boundary knots over the observation 
time axis. Assign m distinct internal knots within [Tmin, Tmax], 
placed as 0≤Tmin<τ1< τ2<…< τq<Tmax. Considering M-spline 
basis functions of degree k-1 on each of q+1 subdivisions, 
the baseline CHF Ʌ0(t) can be approximated over the whole 
space [Tmin, Tmax] by
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Here, m = q+k; Ij(t) is defined by (*); and α’s should be non-
negative to ensure that Ʌ0(t) is nondecreasing. In our study, 
we place the boundary knots (Tmin and Tmax) at the minimum 
and maximum of observation times respectively. The inter-
nal m knots are placed at equally spaced quantiles of the 
observed times in [Tmin, Tmax]. Sieve MLEs of (β, L0) are com-
puted by replacing Ʌ0(t) in (3) by (4) and maximizing the sieve 
log likelihood with respect to θ = (α0, α1, γ1,…, γm,, β) by using 
Newton-Raphson method or the function optim in R. 

Computational Algorithm: 
•	 S1:(Obtain initial values) A set of suitable initial values 
for θ can be generated applying standard Cox PH model to 
given data, considering the Ti|δi=1 as exact failure time. Gen-
erate estimates of β and Ʌ0. Then starting values of (α0, α1, 
γ1,…,γm) may be computed by applying the spline model (4) 
to these estimates of Ʌ0 under least square regression setup 
and with desired number of knots.

•	 S2: Using Newton-Raphson method or optim in R, com-
pute the estimates of θ.

•	 S3: Estimate the baseline CHF Ʌ0(.). 
•	 S4: Since Ʌ0(.) is a nonnegative and monotonically non-

decreasing function, we may apply either Pool Adjacent 
Violators Algorithm (PAVA) to the estimates of Ʌ0(.) in 
Step-3 to ensure the monotonicity[6]. 

3. SIMULATIONS
We performed a simulation study to illustrate the empirical 
behavior of our sieve estimator. The true event times (Yi) were 
procured from a PH model with Ʌ0(t) following Weibull(3,6). 
The examination times (Ti) were generated independently 
from an exponential distribution on the interval (0, 10) with 
an appropriate parameter so that censoring rates are around 
20% and 50%. Two covariates Z1 (binary) and Z2 (continuous) 
were generated from Bernoulli(0.5) and Normal(0, 0.52) dis-
tributions respectively. The true parameter values were taken 
as β1=1 and β2=0.5. Then the ith observation (ti, δi), where δi is 
the censoring indicator, was generated as: (i) Sample yi, and 
ti from their specified distributions. (ii) If yi, ≤ ti, then set δi = 
1 and (ti, δi = 1) is a left censored observation. Else a right 
censored observation (ti, δi= 0) is obtained.

We simulated 1500 replications with sample sizes 100, 400 
and 1000 in each set. We considered cubic splines (k=3) to 
allow adequate smoothness with 12 internal knots (q=12) 
which were placed at equally spaced quantiles within mini-
mum and maximum of observation times. We did apply our 
model for knots- 7, 10, 12, 15 and 20 no. of knots. However, 
for 15 and 20 knots there was no improvement in the AIC 
values. So we report our results for 12 knots. We applied the 
cubic spline-based sieve method along with the profile-likeli-
hood method by Huang[12].

Table-1: Simulation Results on the Regression Parameters for 
the Proposed Spline-based Sieve MLE Method and Profile-
likelihood Approach 

Sam-
ple 
Size

True 
β

Proposed Method  Profile Likelihood 
Method

 Bias  SSE  ESE CR 
(%)  Bias  SSE  ESE CR 

(%)

Censoring Rate = 20%

100 0.5 0.057 0.261 0.272 94.3 0.043 0.249 0.252 93.5

1 0.106 0.238 0.252 94.5 0.092 0.211 0.219 94.3

400 0.5 -0.019 0.218 0.234 94.9 -0.210 0.220 0.238 95.3

1 -0.021 0.183 0.188 94.7 -0.056 0.200 0.213 94.9

1000 0.5 0.002 0.118 0.120 96.4 0.011 0.133 0.140 95.1

1 0.007 0.097 0.111 95.6 0.015 0.114 0.136 93.8

 Censoring Rate = 50%

100 0.5 0.072 0.362 0.358 94.3 0.133 0.348 0.339 94.1

1 -0.054 0.364 0.368 94.8 -0.061 0.344 0.337 93.7

400 0.5 0.047 0.288 0.291 94.5 0.101 0.315 0.317 93.9

1 0.027 0.274 0.268 95.2 0.049 0.324 0.328 94.5

1000 0.5 -0.011 0.216 0.211 95.7 -0.063 0.247 0.260 94.3

1 -0.016 0.209 0.218 95.2 -0.038 0.220 0.223 94.3
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Table-2: Simulation Results on the MaxMSE (Mean Square 
Error) of the Estimates of Ʌ0(t) based on 1500 data Sets from 
the Proposed Spline-based Sieve MLE Method and Profile-
likelihood Approach 

Sample Size
Proposed 
Method

Profile Likelihood 
Method

20% 50% 20% 50%

100 0.0065 0.0063 0.0078 0.0080

400 0.0054 0.0055 0.0067 0.0067

1000 0.0039 0.0042 0.0059 0.0062

Table-1 summarizes various operating characteristics of the 
estimates of βs from the two simulation studies. The bias is 
the difference between the average of 1500 point estimates 
and the true value; ESE the average of the estimated stand-
ard errors; SSE the sample standard deviation of the 1500 
point estimates. The coverage rates (CR) of true βs by the 
1500 95% confidence intervals (CI) have also been reported. 
Following observations are noted from the simulation results: 
(i) Small biases are observed for the two estimators. However 
our proposed spline-based method yields lesser bias for all 
the parameter estimates; (ii)The ESEs of the proposed ap-
proach are close enough to the SSEs; and (iii) The CPs agree 
with the nominal value 0.95 very well. 

Next we estimated the baseline CHF Ʌ0(t) at some pre-speci-
fied equally-spaced quantiles of the event times at each rep-
lication and then calculated the mean square errors (MSE) of 
these estimates. Table-2 shows the maximum of these local 
MSEs (MMSE) for both methods under the same simulation 
setup as above. Though both the methods produced quite 
good estimates of Ʌ0(t), as shown by smaller MMSE values, 
spline-based sieve estimates indicate better estimation than 
the profile likelihood method.

4. APPLICATION 
The natural history of CKD has a prolonged asymptotic pe-
riod, followed by the progression to end stage renal disease 
(ESRD) or renal failure, requiring dialysis. Substantial loss of 
kidney function might occur before clinical symptoms be-
come apparent, if not detected timely. A patient with CKD 
suffers from progressive deterioration of renal function. 
Stages of CKD are defined according to the kidney func-
tion marker- glomerular filtration rate (GFR). Estimate of GFR 
(eGFR) is obtained by various formulas that use serum creati-
nine values and other anthropometric parameters. The eGFR 
(in ml/min per 1.73m2) is then used to classify subjects into 
K/DOQI stages of CKD– 1. ≥90 (Normal); 2. 60-89 (Mild); 3. 
30-59 (Moderate); 4. 15-29 (Severe) and 5. ≤15 (ESRD)[18].

Our event of interest is the renal impairment (CKD stage 3 
onwards) or low eGFR (eGFR ≤ 60 ml/min/1.73m2). Since re-
nal impairment is a chronic condition, the onset time of dam-
age occurrence cannot be observed exactly; only the current 
status of renal function is known at the time of examination. 
However, applications of survival analyses require follow-up 
data, whether retrospective or prospective. We lack main-
tained follow-up data in renal clinics of hospitals in India 
and also large population-based follow-ups. However, some 
studies had conjured up estimates of prevalence and other 
epidemiological parameters of CKD in India [4,5,19-22]. In 
order to apply our proposed method, we generated a hypo-
thetical data set, comprising of 1500 cases, simulated on the 
basis of information reported in some of studies. Reported 
prevalences (in %) of low GFR in India are- 0.86, 1.39, 0.79, 
13.3, 3.02 and 17.4 [4,19,6,21,23,24]. We calculated the av-
erage of these estimates to derive an empirical estimate of 
prevalence of low GFR in adult population at 6%.

In our simulated population, every subject is examined once 
to determine the status of kidney function and captured only 
the current status of renal function at the time of survey. So 

age (in years) of a subject at examination was considered as 
the observation time. We generated observation time from 
truncated Normal (54, 12.73) within the interval (20, 85). Time 
to renal impairment was generated from an exponential dis-
tribution so that rate of the event onset is 6%. Since infor-
mation on Sex, Diabetes Mellitus and Hypertension were 
only available; we generated these covariates only through 
Bernoulli distribution. We generated several data sets se-
quentially. The finally selected data set was the one where 
descriptive characteristics were closer to the reported stud-
ies. Refer [25].

We applied our cubic spline-based sieve PH model to es-
timate the hazard of renal impairment and the effect 
of main risk factors – Sex, Diabetes Mellitus (DM) and 
Hypertension(HTN). Different number of knots (4, 7, 10, 15), 
placed at equidistant points between minimum and maxi-
mum of observation times, were considered. However, we 
reported the results of the model with 7 knots only; because 
it produced the lowest AIC and adding more knots did not 
improve the model likelihoods.

Table-3:Cox PH Regression model for Renal Impairment. 
(Spline-based Sieve Estimation)

Risk Factors Estimates
Hazard Ratio
(HR) 

95% CI

Sex (Female) 1.15  3.17 2.79 – 4.20

Diabetes Mellitus (Yes) 0.43  1.54 1.57 – 2.61

Hypertension (Yes) 0.70  2.01 1.92 – 3.81

 

Figure-1: Estimated Cumulative Survival Probabilities of Re-
nal Impairment by Spline-based Sieve Method 

Table-3 reports the results of sieve estimation of spline-
based Cox PH regression model. Females are thrice as 
likely to experience renal impairment as their male coun-
terparts (HR=3.17; 95% CI: 2.79-4.20). A diabetic person is 
at significantly higher risk of developing kidney dysfunction 
(HR=1.54; 95% CI: 1.57-2.61) and observation conjured in 
case of a hypertensive is akin to that of diabetics (HR=2.01; 
95% CI: 1.92-3.81). 

Figure-1 shows NPMLE of survival function using ICM method 
and the estimated survival function from the cubic monotone 
spline-based PH model. It shows that our smooth estimates 
are close to the npmles, except for those aged 70 years and 
above. This may be because of sparseness of observation for 
that age group; as our simulation data used average age of 
individuals as 54 years and also the reported cross-sectional 
studies from India presented similar scenarios for the elderly 
population. 

5. CONCLUDING REMARKS
This paper has proposed a sieve maximum likelihood esti-
mation procedure for semiparametric proportional hazards 
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model for current status data. Use of the cubic monotone 
spline model (4) to approximate Ʌ0(t) in (2) has produced 
estimates of survival (hazard) functions, which are smooth, 
graphically more appealing and meaningfully interpretable. 
Also, the estimation procedure gets largely simplified due 
to a finite number of parameters required to define (4). Our 
simulation studies demonstrated that the proposed method 
has reasonably satisfactory performance. The choice of the 
number of knots, m, has been determined by the AIC-type 
algorithm. However, an adaptive approach may be used al-
lowing unknown number and locations of the knots. 

Our estimation is fast and does not require a monotone non-
parametric algorithm in every iteration, unlike profile likeli-
hood method[12]; and also yields regression estimators with-
out encountering the problem of slow convergence. Since 
numerical stability of solutions is of practical importance, our 
method can be useful from computational perspective.
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Our proposed approach was used to estimate the effect of 
important risk factors of CKD in India. Our survival analysis of 
simulated data has provided evidence of increased risk of de-
veloping chronic renal impairment within various risk groups, 
which are comparable to the results of other studies. Refer 
[25]. Use of cubic monotone splines to model the unknown 
cumulative hazard of renal impairment seems reasonable; as 
the smooth estimate of survival function, computed using our 
proposed sieve estimation method, are close to NPMLEs.


