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ABSTRACT The paper represents the theory of designing of quadrature mirror filter (QMF).it was resent that Mc Clellen 
transform could be used to generate 2- d diamond shape QMF Filter. In this paper the problem of identifying frequencies 
of disturbances in flexible systems using advanced Digital Signal processing techniques such as filter banks and Quadrature 
Mirror Filters is addressed. In a number of situations there is a need to design a controller for a system with flexible modes 
In this paper the problem of identifying frequencies of disturbances in flexible systems using advanced Digital Signal 
Processing techniques such as filter banks and Quadrature Mirror Filters is addressed. In a number of situations there is a 
need to design a controller for a system with flexible modes This includes design of decimation and interpolation filters, 
analysis/synthesis filter banks (also called quadrature mirror filters, or QMf.

INTRODUCTION
This paper presents the theory of the wavelet transform (WT) 
and its connection to the theory of multirate filter banks. The 
wavelet transform was first introduced in the mathematical lit-
erature by Grossmann and Morlet in 1984, and further treated 
by Meyer, Daubechies, Mallat, and others in the late 1980’s.
In particular, works by Daubechies and Mallat established the 
connection between wavelets and digital filter banks that, as 
a result, generated much interest and activity in the respec-
tive areas. The theory of multirate filter banks, on the other 
hand, was first developed in the context of coding applica-
tions in the late 1970’s by Croisier, Esteban, and Galand who 
introduced a special class of filters called quadrature mirror 
filters (QMF), and also by rochiere, Webber, and Flanagan who 
introduced a similar technique in the context of speech cod-
ing . Subsequently, solutions to the perfect reconstruction (PR) 
filter bank for the two-band and the general M-band case were 
found, and a general theory on the design of multirate filter 
banks was also established. Some historical perspectives on 
the development of wavelets and filter banks can be found in, 
and in-depth studies of wavelets and filter banks can be found 
in. This paper is organized as describes maximally decimated 
two channel filter banks, presents the wavelet transform in the 
continuous-time and discrete-time domain and shows its rela-
tionship to the two-channel filter bank, covers design issues of 
the wavelet filter bank, and ends with a brief summary.

I. THE TWO-CHANNEL FILTER BANK
Digital Filter banks are commonly used in applications that re-
quire a way of transforming the input signal into a frequency or 
time-frequency domain representation. As the name suggests, 
this is done through a bank of filters that divides the signal 
spectrum into approximate frequency subbands or channels 
and generates a time-indexed series of coefficients that repre-
sent the frequency-localized signal energy within each band A 
uniform two-channel filter bank is shown in Figure 4.1(a) and 
the corresponding magnitude response in Figure 4.1b). 

Figure 4.1: Two-channel filter bank (a) analysis and synthesis 
filter bank structure (b) frequency response of analysis filters 
H0(z) and H1(z)

In the analysis stage, the input signal x(n) is filtered by the 
low-pass filter H0(z) and the high-pass filter H1(z) and then 
down-sampled by a factor of 2 to produce subband signals 
y0(n) and y1(n), respectively. In the synthesis stage, the sub-
band signals y0(n) and y1(n) are first up-sampled by a fac-
tor of 2, then passed through low-pass filter G0(z) and high-
pass filter G1(z), respectively, and finally added together 
to produce the reconstructed signal ˆx(n). In the z-domain, 
the down-sampling and up-sampling operations can be ex-
pressed as

g(n) = (↓2)f(n) : G(z) =1\2[F(z1/2) + F(−z1/2)] (4.1)
g(n) = (↑2)f(n) : G(z) = F(z2). (4.2)

Using equations 4.1 and 4.2 and the input-output relation-
ship of the filter bank in Figure4.1, 

we obtain

where the first term represents the amplitude and phase dis-
tortions that result from thefiltering operations and the sec-
ond term represents the aliasing and imaging distortionsthat 
result from the down-sampling and up-sampling operations. 
The first term is calledthe distortion transfer function, T(z), 
and the second term is called the aliasing transferfunction

Since any distortion caused by the filter bank is undesirable, 
especially aliasing error [37],the design of the analysis and 
synthesis filters revolve around the requirements of aliascan-
cellation (AC) and perfect reconstruction (PR). The conditions 
for AC and PR can be summarized as follows.

• Alias Cancellation: Choose the synthesis filters as
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Then, 

Notice that the AC condition simplifies the design to design-
ing only filters H0(z) and H1(z) and minimizing the distortion 
in T(z).

• Perfect Reconstruction: For PR, we need

where c = constant and l ∈ Z, and

where the reconstructed signal is just a delay of the input 
signal by z−l.

II. Classic QMF Filters (non-PR)

The “classic” QMF filters proposed by Croisier, Esteban, and 
Galand [41] are designed by first imposing the relationship

which relates the low-pass and high-pass filter through a sim-
ple sign alteration. Equation 4.12 can also be expressed in 
the Fourier domain as

H1(ejw) in equation 4.13 represents a high-pass filter whose 
response is a mirror image of the low-pass filter response 
|H0(ejw)| with respect to the quadrature frequency, π 2 . Us-
ing the AC condition of equations 4.6 and 4.7, and equa-
tion 4.12 above, the distortion transfer function can now be 
simplified to

Note that the design of QMF filters according to 4.14 only 
involves one filter, H0(z). Several well known solutions to this 
exist and a few are described next. First, note that for PR we 
need

The only solution to 4.15 using an FIR filter is the trivial Haar 
filter as all other solutions involve some type of distortion in 
T(z). Among more practical FIR solutions, Johnston’s

Filters offer small reconstruction error and good overall per-
formance. Johnston’s filters are designed to provide high 
stop-band attenuations and good transition-band character-
istics while eliminating phase distortion and minimizing am-
plitude distortion in T(z). Among IIR solutions, the well known 
elliptic filters offer a solution where amplitude distortion is 
eliminated and phase distortion is minimized.

III. Smith-Barnwell Filters (PR Orthogonal)
The solution proposed by Smith and Barnwell [66] is based 
on the AC condition and the Relationship

where filters H0(z) and H1(z) (as well as G0(z) and G1(z)) are 

FIR filters of odd order N. Also called conjugate quadra-
ture filters (CQF), these filters provide the quadrature mirror 
property like QMF filters, but also the perfect reconstruction 
property as T(z) can now be made to be a pure delay. The 
distortion function T(z) can be simplified using equations 4.6, 
4.7, 4.16 as

Note that the design of CQF filters also involves only one 
filter, H0(z), as the other three

can be derived using equations 4.6, 4.7, 4.16. To obtain PR in 
equation 4.17, we need

If we define

then we can re-write 4.18 as

P(z) represents a zero-phase half-band filter in which all even-
indexed terms are zero except the term at z0. Description 
and design of half-band filters have already been

discussed extensively in the filter bank literature, e.g. [35]. 
Once half-band filter P(z) is designed, filter H0(z) can be ob-
tained through symmetrical factorization of 4.19 [67]. In addi-
tion to PR, Smith-Barnwell filters also provide the orthogonal-
ity property that is described next. First, using equation 4.16 
in 4.18, we obtain

Next, we can re-write equation 4.16 and obtain

and using the equality relationship given by

we can substitute 4.23 in equations 4.16 and 4.22 to obtain

Equations 4.18, 4.21, and 4.24 represent the orthogonality 
condition in the z-domain. The term Hi(z)Hi(z−1) in equations 
4.18 and 4.19 represents the auto-correlation of Hi(z), and 
the term H0(z−1)H1(z) in 4.24 represents the cross-correlation 
between H0(z) and H1(z) [68]. Equations 4.18 and 4.21 are 
also known as the power symmetric property [35]. In the time 
domain, equations 4.18, 4.21, and 4.24 can be expressed as 

or more succinctly as 

Where
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In general, Smith-Barnwell filters provide PR, finite support, 
and orthogonality, but lack linear phase (except for the trivial 
Haar filter).

IV. Generalized QMF Filters (PR Linear Phase)
Generalized QMF filters represent PR solutions that sacrifice 
orthogonality for linear phase. Using equation 4.4 and the 
AC condition, we obtain

where filters H0(z) and H1(−z) can be of even or odd order 
and the lengths of the two are not necessarily equal. Unlike 
the CQF filters, the design now involves first designing the 
two analysis filters H0(z) and H1(−z), and then obtaining the 
two synthesis filters using equations 4.6 and 4.7. To satisfy 
PR, we impose

where l ∈ Z. Note that the delay term on the right-hand side 
has to be odd since all even terms of H0(z)H1(−z) cancel with 
the even terms of H0(−z)H1(z). Defining

we can formulate the PR condition as

which again represents a zero-phase half-band filter. How-
ever, since orthogonality is no longer required, P(z) in 4.31 is 
no longer factored symmetrically but factored so as to

provide symmetry in H0(z) and H1(z) separately. Detail and 
examples of this procedure can be found in [35, 64]. Simi-
lar to the orthogonality condition given in the z-domain and 
time-domain, we can summarize the biorthogonality condi-
tion in the z-domain as 

and in the time-domain as

Note that biorthogonality is a more general condition that 
provides orthogonality across the analysis and synthesis fil-
ters [40], as opposed to within the analysis and synthesisfil-
ters, and hence the name “bi-orthogonal”.

v. Conclusion
Two-channel filter banks, in general, are characterized by the 
type of errors they introduce into the signal and the prop-
erties that the filters provide. Reconstruction error is made 
up of three components, namely, ) aliasing distortion, 2) am-
plitude distortion, and 3) phase distortion. Aliasing (and im-

aging) distortion is represented by A(z), and amplitude and 
phase distortions are represented by T(z). Properties of filters 
that we are particularly interested in are 1) finite support (i.e. 
FIR) 2) orthogonality, and 3) linear phase. Ideally, all three 
properties need to be incorporated into the filters as they are

considered important in audio coding, e.g. orthogonality en-
sures that quantization noise in different channels remain in-
dependent, linear phase provides constant group delay, and

finite support leads to stable and simple implementations. 
But it has been found that only two out of the three proper-
ties can be satisfied simultaneously for any given twochan-
nel PR filter bank. This limitation is illustrated in Figure 4.2 
where different solutions to the two-channel PR filter bank 
are shown. Regions of solutions for the three properties are 
shown where we find regions that offer two out of the three 
properties, but none that offer all three, except at the center 
point where the three properties overlap (i.e. Haar solution).

Figure 4.2: Two-channel PR filter bank solutions Venn dia-
gram for 1) finite support, 2) orthogonality, and 3) linear 
phase (P(z) is rational and real)

We can summarize the two-channel filter bank solutions de-
scribed in this section according to Table 4.1. Table 4.1 shows 
a convenient description of the four families of filters using 
the properties that revolve around PR. Note that, in 

addition to these properties, filter banks generally need to be 
designed to provide other important properties such as good 
stopband attenuation, sharp cut-off rate, low pass-band and 
stop-band ripples, and short delay. Filter Distortions Com-
peting Properties Family ALD AD PD FIR Orthogonal Linear 
Phase Johnston None Min. None Yes ? Yes Elliptic None 
None Min. No ? No Smith-Barnwell None None None Yes 
Yes No Generalized QMF None None None Yes No Yes Ta-
ble 4.1: Two-channel filter bank solutions described in terms 
of properties that revolve around PR It is interesting to note 
that during the development of two-channel (and the more 
general M-channel) filter banks, the so called polyphase rep-
resentation provided a considerable amount of simplification 
in theory, design, and implementation. The polyphase repre-
sentation is essentially a regrouping of terms in the z-domain 
that allows an efficient representation of the filter bank ac-
cording to analysis and synthesis polyphase matrices. Some 
important constraints such as AC, PR, and orthogonality can 
be rather conveniently expressed using these matrices. As 
a result, much of the filter bank theory discussed today is 
based on the polyphase representation .


