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ABSTRACT An epidemic model with non-monotonic incidence rate under a limited resource for treatment is proposed 
to understand the effect of the capacity of the treatment. This model is investigated by considering modi-

fied non-monotonic incidence rate with immigration. It is assumed that the treatment rate is proportional to the number of 
infective when it is below the capacity and is a constant when the number of infective is larger than the capacity. Existence 
and stability of the disease free and endemic equilibrium are investigated for both the cases. Some numerical simulations 
are given to illustrate the analytical results.

1. Introduction 
Mathematical modeling is an important tool to understand 
and predict the spread of infectious diseases. In this process, 
rate of incidence plays a crucial role. The incidence is an 
epidemiological model is the rate at which susceptible be-
come infectious. Bilinear and std. incidence rate have been 
frequently used in classical epidemic models Capasso and 
Serio [2] introduced a saturated incidence rate g(I)S into epi-
demic models, where g(I) tends to a saturation level when I 
gets large, i.e., g(I) = KI / (1+αI). Mena Lorca and Hethcote 
[6] also analyzed an SIRS model with the same saturation inci-
dence. Several different incidence rates have been proposed 
by other researchers. Nonlinear incidence rate of the form 
bIpSq were investigated by Liu. et. al. [9]. A very general form 
of non-linear incidence rate was considered by Derrick and 
Driessche [3]. Ruan and Wang [11] studied an epidemic mod-
el with a specific non-linear incidence rate kI2S / (1+αI2 ) and 
presented a detailed qualitative and bifurcation analysis of 
the model. A more general incidence λIpS / (1+αIq) was pro-
posed by many other researchers [1,4,8,10,12,s13]. Xiao and 
Ruan [14] proposed an epidemic model with non-monotonic 
incidence rate λIS / (1+αI2). Besides the rate and nature of 
incidence, treatment plays an important role to control the 
spread of diseases. This model is investigated and analyzed 
by Kar and Batabyal [7]. Also this model is modified by Ga-
jendra Ujjainkar. et. al. [5]. Wang [12] proposed a treatment 
function

T(I) = rI, if 0 ≤ I ≤ I0

K1, if I > I0 (1)

where K1= rI0 for some fixed value I0.Kar and Batabyal [9] 
proposed a SIR model with non-monotonic incidence rate 
suggested by Xiao and Ruan [1] incorporating the above 
treatment function and non-monotonic incidence rate under 
a treatment function. 

2. The Mathematical Model
Following Gajendra, Gupta, Sing and Khandelwal [10], the 
proposed model is 

 (2)

 (3)

   
   (4)

where S(t), I(t), R(t) denote the number of susceptible, infec-
tive, recovered individuals, respectively. a is the recruitment 
rate of the population, d is the natural death rate of the 
population, λ is the proportionality constant, m is the natural 
recovery rate of the infective individuals, β is the rate at which 
recovered individuals lose immunity and return to suscepti-
ble class, µ the increase of at a constant rate and α1 and α2 
are the parameter measures of the psychological or inhibi-
tory effects and all other parameters have the same meaning 
as given in [9]. In this work take the treatment function T(I) 
defined by

T(I) =rI, if 0 ≤ I ≤ I0 

K1, if I > I0 

This means that the treatment rate is proportional to the in-
fective when the number of infective is less or equal to some 
fixed value I0 and the treatment is constant when the number 
of infective crosses the fixed value I0. In the next section, the 
stability of the model taking two different cases of treatment 
function is discussed.

Case 1 : SIR model with 0≤ I ≤ I0

3. Equilibrium Points and Stability
When T(I) = r I, the model reduces to

 (5)

 (6)

 (7)

When the time derivatives equal to zero, we get a disease 
free equilibrium E0(a+µ/d, 0,0). For the endemic equilibrium 
E*(S*,I*,R*) is the solution of 

Lemma 3.1
S(t) + I(t) + R(t) = (a + µ)/d is an invariant manifold of the sys-
tem attracting the first octant

Proof :
Let N(t) = S(t) + I(t) + R(t), then dN(t)=a-dN(t). Simple math-
ematical calculation shows that N(t) tends to (a+µ) / d as t 
tends to infinity. 

Theorem 3.2
(i) When the basic reproductive number R0 ≤ 1, there ex-

ist no positive equilibrium of the system (14)–(15), and in 
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that case the only disease free equilibrium (0,0) is a stable 
node.

(ii) When R0 > 1, there exists a unique positive equilibrium 
of the system (14)-(15) and in that case (0, 0) is an unsta-
ble saddle point. Also the condition for which the unique 
positive equilibrium will be locally stable if x*< P4 / P3.

Theorem: 3.4
When K > u1+c1+cv1 and u1v1 ≤ cv2 the system has two posi-
tive equilibrium points ( 11 , yx )  and ( 22 , yx ), where

1x  and 2x  are the solution of the equation (27) under the 
parametric conditions given by (29) and when the conditions 
(32) and (35) are fulfilled at some equilibrium point that point 
must be asymptotically stable.

4. Numerical Simulation :
Case (i) : 
When the treatment rate is ∞ to the infective so that 0 ≤ I ≤ I0. 
We choose the parameters in the model as follows.

a=3, d=0.1, α2=0.1.β=0.1, λ = 0.3, µ= 0.1, m=0.01, r = 0.2 
and α1varies from 0 to 4 

Here the basic reproduction number R0 = 30 >1. The equi-
librium position goes lower and when the new parameter 
α1increases. Simultaneously when we increase the treatment 
function r we see that at α1 =4 and r=1.5 susceptible popula-
tion increases significantly.

When α1=1, α2=1, a= 15, β=0.5,d=2.5, m=10, r=0.01, µ=0.3, 
λ= 0.3 we have R0=0.14676 < 1. In this case the disease dies 
out. Consider the values of the parameters 

a=3, d=0.1, α1=0.5, α2 = 0.5, β=0.5, µ=0.1, λ=0.3, m=0.01, 
r=0.2 

By rescaling the system we see that u–K <1 hence there exists 
the unique positive equilibrium x*= 8.3241 and y*=8.7403. 
For the above parameters p4/p3= 9.9240 and therefore then 
sufficient condition for stability x*< p4/p3 is satisfied. Hence 
the point is locally stable.

Case (ii) : 
When I > I0, the parameters are 

a=2.8, d=0.0453, α2= 2, β= 0.13, λ=0.4, m = 0.01, K1=0.7, 
µ=0.1with α1=1

In this case S+I+R = a
d
µ+ = 64.01766 is invariant manifold. The 

system reduces to

The rescaling system reduces to 

Here (u-K) < 0, and hence there exists unique positive equi-
librium point (x*,y*) where x* = 8.3241 and y* = 8.7403. For 
the above choice of parameters p3 = 392.8589 > 0, p4 = 
3651.5791, p4/p3 = 9.2949 and therefore the sufficient condi-
tion for local stability. i.e., x* < p4 / p3 is satisfied. 

In order to see the equilibrium point we have u1+c < (K−
cv1) and u1v1 < cv2. Thus the above equation has two positive 
roots. It can be easily calculated that increasing values of α1 
slightly lowers down (x1, y1) where as pushes up the pair (x2, 
y2).

5. Concluding Remarks : 
In this paper we see that the basic reproductive number plays 
an important role to control the disease. When R0 ≤ 1, there 
exists no positive equilibrium, and in that case the disease 
free equilibrium is globally stable, that is the disease dies out. 
But when R0 >1, the unique endemic equilibrium is globally 
stable under some parametric condition. Also we see that 
the treatment rate plays a major role to control the disease. 
When µ= 0, the model coincides with that of Gajendra. et. 
al. [10].


