Ac Conductivity of Sodium perchlorate doped PEO composites: Battery Application

KEYWORDS

Ionic polymer, ac conductivity, Slurry technique, FTIR, SEM

Kunteppa H

Department of Physics, Govt. Pre University College, Raichur -584101, India

Abstract

PEO $-\mathrm{NaClO}_{4}$ composites have been prepared by slurry method using acetonitrile as solvent. The prepared composites is characterized by FTIR and surface morphology was carried out by SEM. Ac conductivity shows that $50 \mathrm{wt} \%$ has high conductivity due to ionic polarization and therefore it has low dielectric loss value of 1.5×10^{-8}.

Introduction

Substantial research efforts have been devoted to improve ion conductivity in solid polymer electrolyte (SPE) materials at ambient temperature for potential application in energy storage by new types of high performance solid state batteries, energy conversion by the fuel cells, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, an a Substantial research efforts have been devoted to improve ion conductivity in solid polymer electrolyte (SPE) materials at ambient temperature for potential application in energy storage by new types of high performance solid state batteries, energy conversion by the fuel cells, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and many others. To enhance the performance of SPEs in electrochemical utilities, several modifications are explored such as incorporation of nano- and inorganic ceramic fillers [1-3], and plasticizers [4], etc., in polymer electrolytes. In the present work author reported ac conductivity of $\mathrm{PEO} / \mathrm{NaClO}_{4}$ composites for possible battery application.

Experimental

Polyethylene oxide (relative molecular mass of 500000) is dried under vacuum at $50^{\circ} \mathrm{C}$ for 24 h before use. Sodium perchlorate $\left(\mathrm{NaClO}_{4}\right)$ is also dried under vacuum at $120^{\circ} \mathrm{C}$ for 24 h to remove water from the crystal. Pure PEO and PEO/ NaClO_{4} composites are prepared by solution casting technique using anhydrous acetonitrile. First PEO is dissolved in anhydrous acetonitrile and continuously stirred for 5-6 hrs to obtain homogeneous solutions/gels. The gels were poured into glass plates in a dry room fume hood and left for 12 hrs to remove the majority of the acetonitrile. The PEO/Na$\mathrm{ClO}_{4}(90 / 0,80 / 20,70 / 30,60 / 40$ and $50 / 50$) composites are prepared by adding different weight percentages NaClO_{4} in homogeneous PEO solutions/gels. The gels are then poured into glass plates in a dry room fume hood and left for 12 hrs to remove the majority of the acetonitrile. The composites are then further dried at $60^{\circ} \mathrm{C}$ under vacuum for 24 hrs . The composites thus obtained are stored in the dry room at $22^{\circ} \mathrm{C}$ for several weeks prior to characterization. The thickness of $\mathrm{PEO} / \mathrm{NaClO}_{4}$ composites is found to be varies from $1 \mathrm{~mm}[5]$.

The FTIR spectra of pure PEO and PEO/ NaClO_{4} composites are recorded over the wavenumber range 400 to $4000 \mathrm{~cm}^{-1}$ using Perkin Elmer (model 1600) IR spectrometer in KBr medium at room temperature. For recording IR spectra the powder of samples are mixed with KBr in the ratio 1:25 to ensure the uniform dispersion of samples in KBr pellets. The mixed powders are the pressed in a cylindrical die to obtain clean discs of thickness 1 mm .

The morphology of pure PEO and $\mathrm{PEO} / \mathrm{NaClO}_{4}$ composites are investigated using Phillips XL30 ESEM scanning electronic microscope (SEM). To obtain SEM image the samples in the form of pellets are mounted on aluminum platform. The
conducting gold is then sputtered on the sample to avoid charging at the sample surfaces. The samples are then examined under SEM and selected areas were photographed. The grain size is calculated using linear intercept technique and average grain size is calculated by the following equation.
Grain size $-1.56 \frac{C}{M N}$ (1)
where, C is the length of the test line(s), N is the number of intercepts and M is the magnification calculated from the reference scale printed on the micrograph.

3. Results and Discussion

3.1. Fourier Transform Infra red Spectroscopy

The FTIR spectra of pure $\mathrm{PEO}, \mathrm{NaClO}_{4}$ and $\mathrm{PEO} / \mathrm{NaClO}_{4}$ ($50: 50 \mathrm{wt} . \%$) composite are shown in Fig 1(a-c). The FTIR spectra of pure PEO shows peaks at $3422 \mathrm{~cm}^{-1}, 2922 \mathrm{~cm}^{-1}$, $2359 \mathrm{~cm}^{-1}, 2164 \mathrm{~cm}^{-1}, 1971 \mathrm{~cm}^{-1}, 1813 \mathrm{~cm}^{-1}, 1639 \mathrm{~cm}^{-1} 1467$ $\mathrm{cm}^{-1}, 1344 \mathrm{~cm}^{-1}, 1120 \mathrm{~cm}^{-1}, 962 \mathrm{~cm}^{-1}, 642 \mathrm{~cm}^{-1}$ and $530^{\prime} \mathrm{cm}^{-1}$. Since the PEO is highly hydrophilic a broad band appears at $3422 \mathrm{~cm}^{-1}$. The band at 2922 and $2359 \mathrm{~cm}^{-1}$ are respectively due to asymmetric and symmetric CH 2 stretching. The band at $1467 \mathrm{~cm}^{-1}$ is due to the asymmetric CH 2 bending and at $1344 \mathrm{~cm}^{-1}$ corresponds to the symmetric CH_{2} wagging and some C-C stretching.

The FTIR spectra of pure NaClO_{4} shows peaks at $3552 \mathrm{~cm}^{-1}$, $3481 \mathrm{~cm}^{-1}, 3237 \mathrm{~cm}^{-1}, 2025 \mathrm{~cm}^{-1}, 1617 \mathrm{~cm}^{-1}$ and $479 \mathrm{~cm}^{-1}$. The presence of Peak at $3552 \mathrm{~cm}^{-1}$ is due to the water absorption by NaClO_{4}. The peaks at $3481 \mathrm{~cm}^{-1}$ and $3237 \mathrm{~cm}^{-1}$ are due to $\mathrm{O}-\mathrm{H}$ vibration and it is formed at high frequency range due to the splitting of water molecule. The peaks observed at 2025 cm^{-1} is due to the Na^{+}ions, $1617 \mathrm{~cm}^{-1}$ and $479 \mathrm{~cm}^{-1}$ are due to chlorate $\left(\mathrm{ClO}_{4}^{-}\right)$ions.

The FTIR spectra of $\mathrm{PEO} / \mathrm{NaClO}_{4}$ ($50: 50 \mathrm{wt}$.\%) composite shows prominent peaks at $3551 \mathrm{~cm}^{-1}, 3470 \mathrm{~cm}^{-1}, 3414 \mathrm{~cm}$ ${ }^{1}, 2926 \mathrm{~cm}^{-1}, 1948 \mathrm{~cm}^{-1}, 1896 \mathrm{~cm}^{-1}, 1618 \mathrm{~cm}^{-1}, 1467 \mathrm{~cm}^{-1}, 1342$ $\mathrm{cm}^{-1}, 1282 \mathrm{~cm}^{-1}, 1240 \mathrm{~cm}^{-1}, 966 \mathrm{~cm}^{-1}, 936 \mathrm{~cm}^{-1}, 623$ and $484 \mathrm{~cm}^{-}$ ${ }^{1}$. Thus the FTIR spectra of $\mathrm{PEO} / \mathrm{NaClO}_{4}$ ($50: 50$ wt \%) composite shows the prominent of both PEO_{4} and NaClO_{4} which confirm the formation of $\mathrm{PEO}-\mathrm{NaClO}_{4}$ composite.

Figure 1 shows the FTIR spectra of $\mathrm{PEO}, \mathrm{NaClO}_{4}$ and PEO - NaClO_{4} composites

3.2 Scanning Electron microscopy

The scanning electron micrographs (SEM) of the PEO and $\mathrm{PEO} / \mathrm{NaClO}_{4}(50: 50)$ composite are given in fig 2 (a-b). The SEM image of pure PEO shows highly crystalline and elongated rod like structure. Further the SEM image clearly shows considerable intragranular distance between two grains which indicates that PEO grains have less interaction with each other. The average grain size of PEO granules is estimated using the linear intercept formula and it is found to be 35 to $40 \mu \mathrm{~m}$. The SEM images of PEO: $\mathrm{NaClO}_{4}(50: 50$ wt \%) composites shows significant changes in morphology. The SEM image of PEO: NaClO_{4} shows highly agglomerated structure. Further the grains are found to have irregular shape. The average grain size is estimated to be 2.7 mm . The granules are found to be interlinked with each other which decreases the intragranular distance [6]. The decrease in the intragranular distance between the grains may support the charge transfer mechanism from one grain to another grain.

Figure 2 shows the SEM image of $\mathrm{PEO}, \mathrm{NaClO}_{4}$ and PEO - NaClO_{4} composites

3.3 Ac conductivity

Figure 3 (a) shows the variation of ac conductivity as a function of frequency for Polyethylene oxide. The ac conductivity of Polyethylene oxide exhibit two phases in the frequency range $10^{2} \mathrm{~Hz}$ to $10^{6} \mathrm{~Hz}$. In frequency between $10^{2} \mathrm{~Hz}$ to 10^{4} Hz , the conductivity values are almost constant and increases suddenly in the frequency range $10^{4}-10^{6} \mathrm{~Hz}$. Lattice polarization around a charge in localized state may be responsible for multiple phases of conductivity in Polyethylene oxide. Figure 3 (b) shows the variation of ac conductivity as a function of frequency for different weight \% of $\mathrm{PEO} / \mathrm{NaClO}_{4}$ composites. It is observed that, the composite $40 \mathrm{wt} \%$ of $\mathrm{PEO}: \mathrm{NaClO}_{4}$, shows high conductivity which is due to ionic polarization and electrode polarization [7].

Figure 3 (a) shows the variation $\mathrm{s}_{\mathrm{ac}} \mathrm{S} / \mathrm{cm}$ versus frequency for PEO and 3 (b) shows the variation of ac conductivity as a function of frequency for different weight \% of PEO/ NaClO_{4} composites.

Polyethylene oxide: Sodium chlorate $\left(\mathrm{NaClO}_{4}\right)$
The variation of dielectric loss as a function of frequency for polyethylene oxide: Sodium chlorate $\left(\mathrm{NaClO}_{4}\right)$ composites (different wt \%) is represented in Figure 4. Even though NaClO_{4} is added up to $50 \mathrm{wt} \%$ in PEO, the behavior of dielectric loss with respect to frequency follows the same trend as that of pure PEO. At higher frequencies these composites exhibit almost zero dielectric loss which suggests that these composites are lossless materials at frequencies beyond 1 kHz .

Figure 4 shows the variation of tan delta as a function of frequency for different weight \% of $\mathrm{PEO}: \mathrm{NaClO}_{4}$ composites

3.4 Conclusion

Composites of NaClO_{4} doped in PEO have been prepared by slurry method using acetonitrile as solvent. The prepared composites is further characterized to confirm the formation of composites by FTIR and surface morphology was carried out by SEM. Ac conductivity shows that $50 \mathrm{wt} \%$ has high conductivity due to ionic polarization and therefore it has low dielectric loss value.

