
64  X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 7  | July 2013 | ISSN - 2249-555XRESEARCH PAPER Engineering 

Effect of Cryogenic Cooling on Surface Integrity in 
Turning of Hard Alloy Steel

KEYWORDS Cryogenic cooling; Hard steel; Surface integrity; Grey relational analysis; Optimization

ABSTRACT Surface roughness and micro-hardness which are the constituents of surface integrity (SI) of the machined 
components generally get affected by cutting parameters such as  the cutting speed, the feed rate, the depth 

of cut, etc. This paper presents a study that investigates the effect of the CNC hard turning parameters on the surface 
roughness average (Ra) and the micro-hardness (µh) of hard steel (AISI 52100) under cryogenic cooling conditions. Nine 
experimental runs based on an orthogonal array of Taguchi method are performed and grey relational analysis method 
is then applied to determine an optimal combination of the cutting parameter setting. Further, the Grey relational grade 
matrix obtained by analyzing the data is used to represent the degree of influence for each controllable process factor onto 
individual quality targets. From the results, the feed rate is found to have the most influence on the roughness average and 
also on the micro-hardness. In addition, the analysis of variance (ANOVA) is also employed to identify the most significant 
factor; the cutting speed is the most significant controlled factors for affecting the SI in the cryogenically cooled turning 
operations according to the weighted sum grade of the surface roughness average and micro-hardness.
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1. Introduction
Components made of hard steel such as AISI 52100 are used 
by numerous industries e.g. automotive, gear, bearing, tool 
and die making industries. Manufacturing of high quality 
products with low cost and reduced time is the major ob-
jective of today’s industries and to achieve this they employ 
automated and flexible manufacturing systems along with 
computerized numerical control (CNC) machines. Recently, 
hard turning of steel has attracted researchers involved in in-
dustrial production and scientific research owing to a number 
of potential advantages, including lower equipment costs, 
shorter setup time, high accuracy, fewer process steps, and 
greater part geometry flexibility offered by the turning pro-
cess. According to an estimate, hard turning used to fabri-
cate complex parts, could save manufacturing costs by up to 
30 times [1, 2]. It has been observed that in wet hard machin-
ing, conventional cutting fluid used during machining fails to 
penetrate the chip–tool interface and thus, the heat generat-
ed is not dissipated efficiently. The application of cutting fluid 
does not effectively reduce the cutting temperature and thus, 
it does not improve the tool life. Consequently, researchers 
have recently employed cryogenic cooling by liquid nitrogen 
in hard machining of some commonly used steels. Cryogenic 
cooling provides less cutting forces, reduces the cutting tem-
perature, improves tool life and also results in better surface 
finish as compared to both dry as well as wet machining [3, 
4]. Cryogenic cooling has recently been found to be an inno-
vative technique to improve tool wear resistance [5- 8]. 

Hard turning processes are characterized by a high level of 
accuracy in terms of the form and size, high quality of sur-
face finish and surface integrity (SI) in workpieces [9-11]. In 
order to establish adequate machining guidelines, study of 
several factors (roughness, hardness, residual stresses, mi-
cro-structural changes, etc.) that define the surface integrity 
generated in the part by a machining operation is required. 
Maintaining SI in the machined components is one of the 
most critical requirements, as functional behaviour and reli-

ability of the components such as fatigue life and wear resist-
ance depend to a great extent on the SI of the components 
when they are put to use. [12-14]. It is important to select 
the optimum combination of cutting parameters such as cut-
ting speed, feed rate, depth of cut and cutting fluid as these 
parameters have impact on multi performance characteristics 
like surface roughness, strain hardening, micro-hardness and 
microstructure which are indeed constituents of SI [15] and 
they also affect high production rate of the products with an 
acceptable quality level and SI. Among the several SI param-
eters, surface roughness (Ra) and the micro-hardness (µh) are 
very important as they correlate with the surface profiles in 
order to better characterize the different machining process-
es. Recently, studies have been conducted to investigate the 
effect of cryogenic machining on the surface integrity. It has 
been found that the cryogenic machining performed with a 
large edge radius tool led to enhanced surface integrity [16, 
17]. It has been also found that the surface roughness gets 
reduced when machining with cryogenic cooling [18]. 

Umbrello et al. [19] determined the effects of cryogenic cool-
ing on surface integrity in orthogonal machining of hardened 
AISI 52100 bearing steel. They performed experiments under 
dry and cryogenic conditions using chamfered CBN tool in-
serts. Their results showed the benefits and the future poten-
tial of cryogenic cooling for surface integrity enhancement to 
achieve improved product’s functional performance in hard 
machining. Grzesik et al. [20] studied  the applicability of 
cryogenic hard machining for improving surface integrity pro-
duced in turning operations on parts made of high-strength, 
low alloy 41Cr4 steel with hardness of 57±2 HRC. The aim of 
their research was to quantify the surface roughness and the 
mechanical properties of the sublayer produced under prac-
tical working conditions. Their results indicated that the hard 
machining produced surfaces with acceptable surface rough-
ness. Further, they also mentioned that using cryogenic hard 
cutting operations can partly eliminate grinding operations in 
cases when white layer is not produced.  
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Production of high quality products with low cost requires 
optimum setting of the machining parameters and Taguchi 
method can be effectively used for the optimization of pro-
cess parameters with minimum number of experiments.  Re-
searchers have extensively used the Taguchi method to plan 
experiments for the purpose of optimization of process and 
design parameters due to the several advantages offered by 
the Taguchi method [21, 22 ]. Sharma et al. [23] applied Tagu-
chi method to find the optimal cutting parameters for surface 
roughness in turning of AISI-410 steel using TiN coated in-
serts. Saini et al. [24] used Taguchi method together with the 
analysis of variance (ANOVA) to optimize the wire electrical 
discharge machining (WEDM) parameters for cutting com-
posite material Al6061/SICP.

The Grey relational analysis method is used for measuring 
the degree of approximation among the sequences using 
a Grey relational grade. It is a new technique for perform-
ing prediction, relational analysis, and decision making in 
many areas. Theories of the Grey relational analysis have at-
tracted considerable interest among researchers [25]. Some 
researchers have also performed the optimization of process 
parameters using Grey relational analysis. For example, Tz-
eng et al. [26] performed the optimization of CNC turning 
operation parameters for SKD11 alloy tool steel using Grey 
relational analysis method. Taguchi method based Grey rela-
tional was applied by Sharma and Bhambri [27 ] for the opti-
mization of two response parameters (surface roughness and 
material removal rate) by three cutting parameters (cutting 
speed, feed rate and depth of cut) during high speed turning 
of AISI H13 under dry conditions. Abhang and Hameedullah 
[28 ] used Grey relational analysis coupled with factorial de-
sign for optimizing the cutting parameters i.e. cutting speed, 
feed rate, tool nose radius, and concentration of solid–liquid 
lubricants (minimum quantity lubricant) for the workpiece sur-
face roughness and the chip thickness. 

It appears from the literature presented above that not much 
work has been done to investigate the effect of cutting pa-
rameters during turning using cryogenic cooling , in general, 
and hard turning in particular on SI  in terms of surface rough-
ness and micro-hardness of the machined surface. Keeping 
this in view, the present work is aimed at investigating the 
effect of three cutting parameters (cutting speed, feed rate 
and depth of cut) on SI during CNC hard turning of AISI 
52100 alloy steel under cryogenic cooling condition. The Ta-
guchi L9 (33) design is employed for experimental planning 
for this purpose. The Grey relational analysis is then applied 
to examine how the turning operation factors influence the 
quality targets of surface roughness and micro-hardness. An 
optimal parameter combination was then obtained. Through 
analyzing the Grey relational grade matrix, the most influen-
tial factors for individual quality targets of turning operations 
can be identified. Additionally, the ANOVA is performed to 
investigate the more influencing parameters on the SI.

2. Grey relational analysis
2.1. Data preprocessing
Normally the range and the unit in one data sequence are 
different from those in another sequence. Thus, it is neces-
sary that a series of various units must be transformed to be 
dimensioless and to achieve this data preprocessing is re-
quired. Data preprocessing involves the transfer of the origi-
nal sequence to a comparable sequence.

Let the original reference sequence and comparability se-
quence be represented as )()(

0 kx O  and )()( kx O
i , i = 1,2,...., m; 

k = 1,2,...., n, respectively, where m is the total number of 
experiment to be considered, and n is the total number of 
observation data . Data preprocessing converts the origi-
nal sequence to a comparable sequence. Several method-
ologies of preprocessing data can be used in Grey relation 
analysis, depending on the characteristics of the original 
sequence [26; 29-30]. If the target value of the original se-
quence is “the-larger-the-better”, then the original sequence 
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However, if a defined target value, OB, exists, then the origi-
nal sequence is normalized in the form:

 (3)

Alternatively, the original sequence can be normalized using 
the simplest methodology in which the values of the origi-
nal sequence is divided by the first value of the sequence, 
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i

: the original sequence, )(* kxi : the sequence 
after the data preprocessing, )(max )( kx O

i
: the largest value 

of )()( kx O
i , and )(min )( kx O

i : the smallest value of )()( kx O
i .

2.2. Grey relational coefficients and Grey relational grades
Following the data preprocessing, a grey relational coeffi-
cient can be calculated using the preprocessed sequences. 
The grey relational coefficient is defined as follows:
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where )(0 ki∆ is the deviation sequence of the reference se-
quence )(*

0 kx  and comparability sequence )(* kxi ; namely 
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A grey relational grade is a weighted sum of the grey rela-
tional coefficients, and is defined as follows:
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The grey relational grade ),(ã **
0 ixx represents the level 

of correlation between the reference and comparability se-
quences. The value of the grey relational grade equals one 
when the two sequences are identical. The grey relational 
grade also indicates the degree of influence exerted by the 
comparability sequence on the reference sequence. Conse-
quently, if a particular comparability sequence is more im-
portant to the reference sequence than other comparability 
sequences, the grey relational grade for that comparability 
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sequence and the reference sequence will exceed that for 
other grey relational grades. The grey relational analysis is 
actually a measurement of the absolute value of data differ-
ence between the sequences, and can be used to approxi-
mate the correlation between the sequences.

3. Experimental procedures and test results
3.1. Materials
In this study, AISI 52100 hardened alloy steel, widely used 
in the automotive, gear, bearing and die industry, etc. was 
used as workpiece material. The chemical composition of 
AISI 52100 is shown in Table 1. 

Table1: Chemical composition of AISI 52100 alloy steel
C Si Mn S P Ni Cr Mo Cu Fe
0.98 0.28 0.39 0.024 0.023 0.141 1.302 0.081 0.042 Rest

3.2. Schematic of machining
The experiments were carried out under cryogenic cooling 
condition using liquid nitrogen (LN2) on a rigid CNC lathe 
machine (LEADWELL T-6) with a 7.5 KW spindle motor at 
4500 rpm. Fig.1 shows Nozzle for LN2. Application in CNC 
lathe machine. CNMG 120408-TN7105 coated carbide insert 
(TiN-TiCN-AL2O3-TiN) having nose radius of 0.8 mm was 
used as cutting tool. The turning length and diameter of the 
workpiece were fixed to 150 mm and 45 mm respectively as 
shown in the schematic diagram (Fig. 2).

Fig.1: Nozzle for LN2 Application

Fig.2: Schematic of turning operation
 
3.3. Experimantal parameters and design
The experiments are conducted with three controllable 3-lev-
el factors and two response variables. Nine experimental runs 
based on the orthogonal array L9 (3

3) are required. Table 2 
presents three controlled factors of the cutting speed (i.e., A 
(m/min)), the feed rate (i.e., B (mm/rev)), and the depth of cut 
(i.e., C (mm)) with three levels for each factor. Table 3 shows 
the nine cutting experimental runs according to the selected 
orthogonal table. After turning, two quality objectives of the 
workpieces are chosen, including the surface roughness (i.e., 
Ra (μm)) and micro-hardness (i.e., µh (hV)). Typically, small val-
ues of surface roughness and target values of micro-hardness 
are desirable for the surface integrity in turning operations.

Table 2: Experimental factors and their levels
Factor Symbol Unit Level-1 Level-2 Level-3
Cutting speed A m/min 100 175 250
Feed rate B mm/rev 0.1 0.16 0.22
Depth of cut C mm 0.2 0.6 1

Table 3: Orthogonal array L9 (33) of the experimental runs
Exp. No. A B C
1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 3
5 2 2 1
6 2 3 2
7 3 1 2
8 3 2 3
9 3 3 1

3.4. Measuring apparatus
The Ra values were measured by the surface roughness tester 
(model: SURFTEST, SV-2100; make: Mitutoyo, Japan). The 
micro-hardness tester (model: MitroWizard; make: Mitutoyo, 
Japan) was used to get µh values. 

4. Results and discussion
4.1 Best experimental run
The experimental results for the surface roughness (Ra) and 
micro-hardness (µh) are listed in Table 4. 

Table 4: Orthogonal array L9 (3
3) of the experimental runs 

and results

Run no. A B C Ra (µm) µh (hV)
1 1 1 1 1.549 307.233
2 1 2 2 2.261 326.133
3 1 3 3 2.737 326.4
4 2 1 3 0.405 322.6
5 2 2 1 0.937 328.633
6 2 3 2 2.209 340.9
7 3 1 2 0.592 327.6
8 3 2 3 0.906 344.833
9 3 3 1 1.907 323.833

Typically, smaller values of the Ra and target values of µh 
are desirable for surface integrity of the machined surface. 
It may be noted that the average µh value of the workpiece 
material before machining was 352.4 hV. Thus, the data se-
quences have a “the-smaller-the-better characteristic” for Ra 
and therefore, Eq. (2) was employed for data preprocessing. 
Similarly, Eq. (3) was used for data preprocessing for µh. The 
values of the Ra and the µh are set to be the reference se-
quence )()(

0 kx O , k = 1, 2. Moreover, the results of nine ex-
periments were the comparability sequences )()( kx O

i , i = 1, 
2, .......,9, k = 1, 2. Table 5 listed all of the sequences after 
implementing the data preprocessing using Eq. (2) and Eq. 
(3). The reference and the comparability sequences were de-
noted as )(*

0 kx and )(* kxi , respectively. Also, the deviation 
sequences i0∆ , )(max k∆ and )(min k∆  for i = 1, 2, ....., 9, 
k = 1, 2 can be calculated.

Table 5: The sequence after data preprocessing

Reference/Comparability sequence Ra µh

Reference sequence 1.0000 1.0000
Comparability sequences No. 1 0.4906 1.0000

No. 2 0.7959 0.5816
No. 3 1.0000 0.5756
No. 4 0.0000 0.6598
No. 5 0.2281 0.5262
No. 6 0.7736 0.2546
No. 7 0.0802 0.5491
No. 8 0.2148 0.1675
No. 9 0.6441 0.6325
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The distinguishing coefficient ζ can be substituted for the 
grey relational coefficient in Eq. (5). If all the process param-
eters have equal weighting, ζ is set to be 0.5. Table 6 listed 
the grey relational coefficients and the grade for all nine com-
parability sequences.

Table 6: The calculated grey relational coefficient and grey 
relational grade for nine comparability sequences.

Experimental 
run (Compara-
bility sequenc-
es)

Orthogonal 
array L9 (3

3)
Grey relational 
Coefficient

Grey 
relational 
grade

A B C Ra µh
1 1 1 1 0.5048 0.4450 0.4749
2 1 2 2 0.3858 0.6172 0.5015
3 1 3 3 0.3333 0.6206 0.4770
4 2 1 3 1.0000 0.5756 0.7878
5 2 2 1 0.6867 0.6505 0.6686
6 2 3 2 0.3926 0.8846 0.6386
7 3 1 2 0.8618 0.6363 0.7490
8 3 2 3 0.6995 1.0000 0.8497
9 3 3 1 0.4370 0.5894 0.5132

This investigation employs the response table of the Taguchi 
method to calculate the average Grey relational grades for 
each factor level, as illustrated in Table 7. 

Table 7: The response table for grey relational.

Levels Factors

A B C
1 0.4845 0.6706 0.5522
2 0.6983 0.6733 0.6297
3 0.7040 0.5429 0.7048

Since the Grey relational grades represented the level of 
correlation between the reference and the comparability se-
quences, the larger Grey relational grade means the compa-
rability sequence exhibiting a stronger correlation with the 
reference sequence. Based on this study, one can select a 
combination of the levels that provide the largest average re-
sponse. Fig. 3 shows the mean value of Grey relational grade 
at different levels of each turning process parameters. The 
dashed line in this figure is the value of the total mean of the 
Grey relational grade. In Table 7 and Fig. 3, the combination 
of A3, B2, and C3 shows the largest value of the Grey relation-
al grade for the factors A, B, and C, respectively. Therefore, 
A3B2C3 with a cutting speed of 250 m/min, a feed rate of 0.16 
mm/rev, and a depth of cut of 1 mm is the optimal parameter 
combination of the turning operations.

Fig. 3: Grey relational grade graph

4.2 Most influential factor
In this study, the Grey relational analysis is applied to exam-
ine how the turning operation parameters influence the qual-
ity targets of workpieces. The values of the factor level in nine 

experimental runs are set to the comparability sequences for 
three controllable factors. Table 8 listed all of the sequences.

Table 8: The sequence after data preprocessing for the 
reference sequences and comparability sequences

Experimental run 
Comparability 
sequences

Reference se-
quences

A B C Ra µh
1 1 1 1 1.00 1.00
2 1 1.6 3 1.46 1.06
3 1 2.2 5 1.77 1.06
4 1.75 1 5 0.26 1.05
5 1.75 1.6 1 0.60 1.07
6 1.75 2.2 3 1.43 1.11
7 2.5 1 3 0.38 1.07
8 2.5 1.6 5 0.58 1.12
9 2.5 2.2 1 1.23 1.05

Data preprocessing was performed based on Eq. (4), and Ta-
ble 8 listed the normalized results. Subsequently, the devia-
tion sequences were calculated using the method mentioned 
above. The deviation sequences and the distinguishing coef-
ficient then were substituted into Eq. (5) to obtain the Grey 
relational coefficients. Additionally, the Grey relational coef-
ficients are averaged using an equal weighting to obtain the 
Grey relational grade. Table 9 listed the Grey relational coef-
ficients and the grade of the Ra of the reference sequence 
and comparability sequences. Table 10 gives the Grey rela-
tional coefficients and the grade of the µh for the reference 
sequence and the comparability sequences. 

Table 9: The calculated grey relational coefficient and grey 
relational grade for experimental factors to experimental 
result of the Ra

A B C
Grey relational coef-
ficient

1.0000 1.0000 1.0000

0.8375 0.9441 0.6060
0.7555 0.8455 0.4229
0.6141 0.7624 0.3333
0.6742 0.7042 0.8571
0.8797 0.7538 0.6009
0.5280 0.7932 0.4751
0.5530 0.7001 0.3492
0.6512 0.7098 0.9111

Grey relational grade 0.7215 0.8014 0.6173

Table 10: The calculated grey relational coefficient and 
grey relational grade for experimental factors to experi-
mental result of the µh

A B C
Grey relational coef-
ficient 1.0000 1.0000 1.0000

0.9698 0.7858 0.5047
0.9694 0.6345 0.3340
0.7383 0.9753 0.3333
0.7438 0.7883 0.9659
0.7551 0.6443 0.5109
0.5794 0.9675 0.5053
0.5891 0.8053 0.3375
0.5773 0.6328 0.9734

Grey relational grade 0.7691 0.8038 0.6072

The Grey relational grades in Tables 9 and 10 can be further 
arranged in a matrix form shown as follows:

 (7)
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By comparing Row 1 and Row 2, some conclusion can be 
drawn from this matrix. In the first row 
, it means that the order of importance for the controllable 
factors to the Ra, in sequence, is the factor B, A, and C. Simi-
larly, from the second row )C,ã(hV)A,ã(hV)B,ã(hV >> , the 
order of importance for the controllable factors to the µh, in 
sequence, is the factor B, A, and C.

The most influential factors that affect the output variables 
are determined by identifying the maximum values in each 
row. Hence, based on the maximum values in the matrix of 
the Grey relational , it can be 
found that the factor B, the feed rate, has the most influence 
on both the Ra, and the µh with ã value of 0.8014 and 0.8038 
respectively. 

Additionally, Table 11 gives the results of the analysis of vari-
ance (ANOVA) for the Ra and the µh using the calculated 
values from the Grey relational grade of Table 6 and the re-
sponse table of Table 7. According to Table 11, the factor A, 
the cutting speed with 56.43% of contribution, is the most 
significant controlled parameters for the turning operation; 
the feed rate is with 19.99% contribution and the depth of 
cut with 20.97% of contribution if the minimization of the 
roughness average and micro-hardness is simultaneously 
considered.

Table 11: ANOVA results for Ra and µh
Factor Level 

1
Level 2 Level 

3
Degree 
of 
freedom

Sum of 
squares

Mean 
square

F value Contri-
bution 
(%)

A 0.4845 0.6706 0.5522 2 0.0940 0.0470 21.6856 56.43

B 0.6983 0.6733 0.6297 2 0.0333 0.0166 7.6821 19.99

C 0.7040 0.5429 0.7048 2 0.0349 0.0175 8.0598 20.97

Error 2 0.0043 0.0022 1.0000 2.60

Total 8 0.1665 0.0208 100.00

4.3 Confirmation test
After identifying the most influential parameters, the final 
phase is to verify the Ra and the µh by conducting the con-
firmation experiments. The A3B2C3 is an optimal parameter 
combination of the turning process via the grey relational 
analysis. Therefore, the condition A3B2C3 of the optimal pa-
rameter combination of the turning process was treated as 
a confirmation test. The result of the confirmation test gives 
the surface roughness average and the micro-hardness simi-
lar to those given in Table 4. 

5. Conclusions
The grey relational analysis based on the Taguchi method’s 
response table was used to optimize the cryogenic machin-
ing parameters in the CNC turning process for AISI 52100. 
Based on the results of the present study, the following con-
clusions can be drawn:
1. From the response table of the average grey relational 

grade, it is found that the largest value of the grey rela-
tional grade is for the cutting speed of 250 m/min, the 
feed rate of 0.16 mm/rev, and the depth of cutting of 
1 mm. It is the recommended levels of the controllable 
parameters of the cryogenic machining process as the 
minimization of the surface roughness average and the 
micro-hardness are simultaneously considered.

2. The order of the importance for the controllable factors 
to both the surface roughness average and the micro-
hardness, in sequence, is the feed rate, the cutting 
speed, and the depth of cut. 

3. Through ANOVA, the percentage of contribution to the 
turning process, in sequence, is the cutting speed, the 
depth of cut, and the feed rate. Hence, the cutting speed 
is the most significant controlled factor for the turning 
operation when the minimization of the roughness aver-
age and the micro-hardness are simultaneously consid-
ered.
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