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ABSTRACT    In this paper, a numerical solution of fractional reaction-dispersion equation has been presented. The algo-
rithm for the numerical solution for this equation is based on implicit finite difference method. The consist-

ency, unconditional stability, and convergence of the fractional order numerical method are described.
The numerical method has been applied to solve a practical numerical example with comparing the results. The results 
were presented in tables using the MathCAD 12 software package when it is needed. The implicit finite difference method 
appeared to be effective and reliable in solving fractional reaction-dispersion equation.

1. Introduction
In recent years there has been a great deal of interest in frac-
tional partial differential equations [1, 2, 3, 4, 5]. These equa-
tions arise quite naturally in continuous time random walk 
with spatial and temporal memories.

The most significant advantage of the fractional order mod-
els in comparison with integer-order models is based on its 
important fundamental physical considerations. However, 
because of the absence of appropriate mathematical meth-
ods, fractional-order dynamical systems were studied only 
marginally in theory and practice of control systems. Numeri-
cal methods and theoretical analyses of fractional differential 
equations are very difficult tasks [6, 7, 8].

The method discussed in this paper is an implicit finite dif-
ference method designed for solving fractional reaction-
dispersion equation where the fractional derivative is in the 
shifted Grunwald estimate form. The unconditional stability 
and convergence of the implicit finite difference approxima-
tion are analyzed and finally, we will present some examples 
to show the efficiency of our numerical method.

2. Finite Difference Method for Solving the Fractional 
Reaction-Dispersion Equation 
In this section, we use the implicit finite difference method 
for solving the fractional reaction-dispersion equation of the 
form:
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In this problem initial and boundary conditions are consid-
ered which are: 

u(x,0)=f(x), L < x < R  (2)

u (L,t) = y1(t), Tt ≤≤0   (3) 

u(R,t)=y2(t), Tt ≤≤0   (4)

where bounded space domain is [L,R], f is a known function 
of x, y1 and y2 are known functions of t. the fractional deriva-
tive of order a  . And a

xD  are defined as the shifted Grun-
wald estimate to the a- the fractional derivative, [9]:
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The finite difference method starts by dividing the x-interval 

[L, R] into n subintervals to get the grid points xi= L + iDx, 
where nLRx )( −=D  and i=0,1,…,n. Also, the t-interval [0,T] is 
divided into m subintervals to get the grid points tj = jDt, j = 
0,1,…,m, where mTt =D .

Next, by evaluating eq.(1) at (xi,tj) and use the implicit Euler 
method one can get:
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Use fractional derivative of the shifted Grunwald estimate to 
a-the fractional derivative eq.(5), to reduce eq.(6) as in the 
following form:
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,1,...,2,1 −= ni 1,...,1,0 −= mj   (7)

where ),(, jiji txuu = . 

The resulting equation can be implicitly solved for ui,j+1 to 
give
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 ,1,...,2,1 −= ni 1,...,1,0 −= mj   (8) 
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Also form the initial condition and boundary conditions one 
can get

ui,0 = f(xi), i=0,1,…, n

uL,j = y1(tj), j=0,1,…, m

uR,j = y2(tj), j=0,1,…, m

By evaluating eq.(8) at each 1,...,2,1 −= ni and 1,...,1,0 −= mj
and using the above three one equations one can get the 
numerical solutions of eq.(1) . 

Theorem. The implicit finite difference method eq.(8) is un-
conditionally stable for all 1<a < 2. 

Proof:
 The system of equations defined by (8), together with the 
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initial and boundary condition can be written in the implicit 
matrix form jj UUC η=+1 where

,],,,[ ,,1,0
T

jnjjj uuuU = and 

C  is the matrix of coefficients, and is the sum of a lower trian-
gular matrix and a super diagonal matrix. Therefore the resulting 
matrix entries jiC ,  for 1,,2,1 −= ni   and 1,,2,1 −= nj   are 
defined by
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To illustrate this matrix pattern, we list the corresponding 
equations for the rows i =1, 2 and n-1:

 1,2011,1111,021 )1( +++ −++− jjj ugugug βββ  ju ,1η=

 −++−− +++ 1,2121,1221,032 )1( jjj ugugug βββ

jj uug ,21,302 ηβ =+

 
++−− +−−+− 1(1,2211,01 jnnjnn ugug ββ 

jnjnnjnn uugug ,11,011,111 ) −+−+−− =− ηββ

According to the Greshgorin theorem [10], the eigenvalue of 
the matrix C are in the disks centered at aββ iiii gC +=−= 11 1,  
with radius 
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With strict inequality holding true when a is not an integer. 
This implies that the eigenvalue of the matrixC are all no less 
then 1 in magnitudes. Hence the spectral radius of the matrix

1−C is less than 1. Thus any error in 
jU  is not magnified, and 

therefore the implicit Euler method defined above is uncon-
ditionally stable. 

3. Consistency, Stability and Convergent
The implicit Euler method defined by (8) is consistent with 
order [ ])()( axt DΟ+DΟ , where [ ]a denotes the largest integer 
that is less than or equal toa . That consistency of the finite 
difference method together with the above result on uncon-
ditionally stability implies that the implicit Euler method is 
convergent.

4. Numerical Example
In this section, we give some numerical results that confirm 
our theoretical. 

Example: Consider the fractional reaction-dispersion equa-
tion:
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subject to the initial condition 

u (x,0) = x0.5, 0 < x < 0.2

and the boundary conditions

u (0,t) = 0, 0 £ t £ 0.025

u (0.2,t) =0.44721 e-t, 0 £ t £ 0.025

This fractional partial differential equation together with the 
above initial and boundary condition is constructed such that 
the exact solution is u(x, t)= x0.5 e-t. 

Table1 show the numerical solution using the implicit finite 
difference approximation for 05.0=Dx  0.05 and 0125.0=Dt .

Now if we assume initial condition and boundary condition 
for this problem

u (x,0) = x0.5, 0 < x < 0.4

u (0,t) = 0, 0 £ t £ 0.02

u (0.4,t) = 0.63246 e-t, 0 £ t £ 0.025

Table 2 give the numerical solution using the implicit finite 
difference approximation for 1.0=Dx  and 0125.0=Dt . 

From table 1 and 2, it can be seen that that good agreement 
between the numerical solution and exact solution.

Table 1: The numerical solution of example by using the 
finite difference method for 05.0=Dx 0.05 and 0125.0=Dt

x t Numerical 
solution

Exact 
Solution Error

0.05 0.0125 0.19300 0.22083 2.78300 E-2
0.10 0.0125 0.26500 0.31230 4.73000 E-2
0.15 0.0125 0.37400 0.38249 8.48720 E-3
0.05 0.0250 0.18900 0.21809 2.90860 E-2
0.10 0.0250 0.28100 0.30842 2.74200 E-2
0.15 0.0250 0.36900 0.37774 8.73600 E-3

Table 2: The numerical solution of example by using the 
finite difference method for 1.0=Dx and 0125.0=Dt

x t Numerical 
solution

Exact 
Solution Error

0.1 0.01 0.29700 0.31230 1.53000 E-2
0.2 0.01 0.40700 0.44166 3.46600 E-2
0.3 0.01 0.53700 0.53700 3.92000 E-3
0.1 0.02 0.28600 0.28600 2.24200 E-2
0.2 0.02 0.41000 0.41000 2.61700 E-2 
0.3 0.02 0.52900 0.52900 5.20000 E-3

5. Conclusions
In this paper:

1- Numerical method for solving the fractional reaction-dis-
persion equation has been described and demonstrated. 

2- The implicit Euler method is proved to be unconditionally 
stable and converges.


