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ABSTRACT In this research, a versatile algorithm for simulating CNN arrays and time multiplexing is implemented using 
numerical integration algorithms; RK4(2), RK4(3) and RK8(6) and. The approach, time-multiplexing simulation, 

plays a pivotal role in the area of simulating hardware models and testing hardware implementations of CNN. Owing to 
hardware limitations in practical sense, it is not possible to have a one-one mapping between the CNN hardware processors 
and all the pixels of the image. The simulator is capable of performing CNN simulations for any size of input image, thus a 
powerful tool for researchers investigating potential applications of CNN. This paper presents proper CNN templates for 
edge detection in image processing. Training of CNN is done by using genetic algorithm

1  Introduction
In this paper, we focus on edge detection which is much 
significant in various application as  virtual reality, intelligent 
human-computer interface and TV-conference, security sys-
tem.[18,19,20]. First step in edge detection is locating face 
and facial features [18],[19]. Then, the detected edges have 
to be normalized and recognized by specially designed clas-
sifier. In this study, we find the facial features and face region 
using CNN templates estimated by using genetic algorithms.

Most of the widely applied genetic cellular neural networks 
fall into two main classes: (1) memoryless cellular  neural 
networks and (2) dynamical cellular  neural networks. As in 
Hopfield networks (HN) and CNN, dynamical neural networks 
have usually been designed as dynamical systems where the 
inputs are set to some constant values and each trajectory 
approaches one of the stable equilibrium points depending 
upon the initial state. Cellular Neural Network is a large-scale 
non-linear analog circuits which processes signals in real 
time[2]. The network behavior of CNN depends on the initial 
state of the cells activation, namely bias I and on weights 
values of A and B matrices which are associated with the 
connections inside the well-defined neighborhood of each 
cell. There are many   approaches in estimation of A,B, I ma-
trices. Here we prefer genetic algorithm. Genetic algorithm 
is a learning algorithm based on the mechanism of natural 
selection and genetics, which have proved to be effective 
in a number of applications. It works with a binary coding of 
the parameter set, searches from a number of points of the 
parameter space. It uses only the cost function during the 
optimization, it need not derivatives of the cost function or 
other information. [16-22].

2 Cellular Neural Networks
Like cellular automata, the CNN is made of a massive ag-
gregate of regularly spaced circuits clones, called cells, which 
communicate with each other directly only through nearest 
neighbors. In Figure 2, each cell is modeled as squares. The 
adjacent cells can interact directly with each other. Cells not 
directly connected together may affect each other indirectly 
because of the propagation effects of the continuous-time 
dynamics of cellular neural networks. An example of a two-
dimensional CNN is shown in Figure 3. Now let us define the 
neighborhood of C(i,j).

Definition : r-neighbourhood
The r-neighbourhood of a cell C(i,j) , in a cellular neural net-
work is defined by,
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where r is a positive integer number.

Figure 3 shows neighborhoods of the C(i,j) cell (located at 
the center and shaded) with r=1 and 2,respectively. To show 
neighbourhood relations more clearly, the center pixel is col-
oured as black and related pixels in brown in Figure 3 and 4. 
Cells are multiple input-single output nonlinear processors all 
described by one, or one among several different, paramet-
ric functionals. A cell is characterized by a state variable, that 
is generally not observable as such outside the cell itself. It 
contains linear and non-linear circuit elements such as linear 
resistors, capacitors and non-linear controlled sources (Fig-
ures 4 and 5).

Every cell is connected to other cells within a neighborhood 
of itself. In this scheme, information is only exchanged be-
tween neighbouring neurons and this local information char-
acteristic does not prevent the capability of obtaining global 
processing. The CNN is a dynamical system operating in con-
tinuous or discrete time. A general form of the cell dynamical 
equations may be stated as follows:

 ( 2 )

where x,y,u,I denote respectively cell state, output, input, 
bias and j and k are cell indices. CNN parameter values are 
assumed to be spaced-invariant and the nonlinear fuction is 
chosen as piece-wise linear (Figure 5). Since we use discrete 
2-D images, Equation (2) is rewritten as, 

with A, B and I being cloning template matrices that are iden-
tically repeated in the neighbourhood of every neuron as,
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The network behaviour of CNN depends on the initial state 
of the cells activation, namely bias I and on weights values of 
A and B matrices which are associated with the connections 
inside the well-defined neighbourhood of each cell. CNN’s 
are arrays of locally and regularly   interconnected neurons, 
or, cells, whose global functionality are defined by a small 
number of parameters (A,B, I) that specify the operation of 
the component cells as well as the connection weights be-
tween them. CNN can also be considered as a nonlinear 
convolution with the template. Cells can be characterized by 
a functional block diagram that is typical of neural network 
theory: Figure 4 depicts a two-stage functional block dia-
gram of a cell, composed of a generalized weighted sum (in 
general nonlinear with memory) integration, output nonlinear 
function/functional. Data can be fed to the CNN through two 
different ports: initial conditions of the state and proper input 
u. Bias values I may be used as a third port.

The network behaviour of CNN depends on the initial state 
of the cells activation, namely bias I and on weights values of 
A and B matrices which are associated with the connections 
inside the well-defined neighbourhood of each cell. CNN’s 
are arrays of locally and regularly interconnected neurons, or, 
cells, whose global functionality are defined by a small num-
ber of parameters (A,B, I) that specify the operation of the 
component cells as well as the connection weights between 
them. CNN can also be considered as a nonlinear convolu-
tion with the template. Since the introduction of Chua [2], 
CNN has attracted a lot of attention. Not only from a theoret-
ical point of view these systems have a number of attractive 
properties, but furthermore there are many well-known ap-
plications like image processing, motion detection, pattern 
recognition, simulation. The reduced number of connections 
within a local neighbourhood, the principle of cloning tem-
plate etc., turn out to be advantage of CNN’s.

3 Behavioral Simulation
Recall that equation (1) is space invariant, which means that 
A(i,j;k,l) = A(i-k,j-1) and B(i,j;k,l) =  B(i,k;,j,l) for all i,j,kl.

Therefore, the solution of the system of difference equations 
can be seen as a convolution process between the image 
and the CNN processors. The basic approach is to imagine 
a square subimage area centered at (x,y), with the subimage 
being the same size of the templates involved in the simula-
tion. The center of this subimage is then moved from pixel to 
pixel starting, say, at the top left comer and applying the A 
and B templates at each location (x,y) to solve the differential 
equation. This procedure is repeated for each time step, for 
all the pixels. An instance of this image scanning-processing 
is referred to as an “iteration”. The processing stops when 
it is found that the states of all CNN processors have con-
verged to steady-state values[2]  and the outputs of its neigh-
bor cells are saturated, e.g. they have a +1 value. 

This whole simulating approach is referred to as raster simu-
lation. A simplified algorithm is presented below for this 
approach. The part where the integration is involved (i.e. 
calculation of the next state) is explained in the Numerical 
Integration Methods section.

In the following two subsections we will discuss genetic algo-
rithms and edge detection by CNN and  genetic algorithms.

3.1 Genetic Algorithms
In the estimation of A.B. and I matrices of CNN, we use ge-

netic algorithms. Genetic algorithm is a learning algorithm 
based on the mechanism of natural selection and genetics, 
which have proved to be effective in a number of applications. 
It works with a binary coding of the parameter set, searches 
from a number of points of the parameter space. It uses only 
the cost function during the optimization, it need not deriva-
tives of the cost function or other information. [11,12]. Pro-
cesses of natural selection cause chromosomes that encode 
successful structures to reproduce more often than those that 
do not. In addition to reproduction, mutations may cause the 
chromosomes of children to be different from those of their 
biological parents, and crossing over processes create dif-
ferent chromosomes in children by changing the some parts 
of the parent chromosomes between each other. Like na-
ture, genetic algorithms solve the problem of finding good 
chromosomes by manipulating in the chromosomes blindly 
without any knowledge about the problem they are solving.
[12]. The underlying principles of GA were first published by 
Holland in1962, [13]. The mathematical  framework was de-
veloped in the 1960s and is presented in his pioneering book 
in 1975 [14]. In optimization applications, they have been 
used in many diverse fields such as function optimization, im-
age processing, the traveling salesperson problem, system 
identification and control. A high-level description of GA has 
been done by Davis in 1991 as follows. [15] Given a way or 
a method of encoding solutions of problem into the form of 
chromosomes and given an evaluation function that returns a 
measurement of the cost value of the following steps:

Step1: Initialize a population of chromosomes

Step2: Evaluate each chromosomes in the population.

Step3: Create new chromosomes by mating current chro-
mosomes; apply mutation and recombination as the parent 
chromosomes mate.

Step4: Delete members of the population to make room for 
new chromosomes.

Step5: Evaluate the new chromosomes and insert them into 
the population.

Step6: If the stopping criterion is satisfied, then stop and re-
turn the best chromosome; otherwise, go to step3

3.2 Edge detection by CNN and genetic algorithms
In this work, proper CNN templates are described to locate 
edge detection in image by using genetic algorithms. For 
this aim, CNN templates are designed so that they satisfy 
the stability. So, A and B templates are selected as symmet-
ric. Because of selecting size of templates as 3*3, totally 11 
template parameters are searched. One of these parameters 
is offset, five of them belongs the A matrix, and the other 
five parameters belongs the B matrix. Each parameter are en-
coded by 16 bits in chromosomes. So, the length of chromo-
somes has been selected as 176 bits. In training process, 72 
chromosomes are constructed as initial population randomly. 
The number of population is kept constant as 72 during the 
algorithm. Mutation probability m p has been set % 1. Train-
ing process includes these steps as follows.

(i). Construct initial population; A matrix is constructed 
called as population matrix. Each row of the population 
matrix represents chromosomes. Because of selecting 
number of chromosomes is 72, there are 72 rows in pop-
ulation matrix. Number of columns of this matrix is 176, 
because there are 176 bits in each chromosome. At the 
beginning this matrix is constructed randomly.

(ii). Extract the CNN template: Chromosomes represents the 
binary codes of the elements of the CNN template A,B, 
I . In this step, each chromosomes are decoded the ele-
ments of the CNN are computed in [-8,8] interval. Since 
each element is coded as 16 bits, each parameter can 
take 216 different value in [-8,8] interval. In each chro-
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mosomes first 11 bits represents first bits of the template 
elements. And second 11 bits of chromosomes repre-
sents the second bits of the template elements and so 
on. These elements are 

   (5)

(iv). Evaluate cost function value for each chromosomes; In 
this step, an image which was selected as training im-
age is given as input to CNN. Normally in this gray-level 
image, brightness varies in 0 (black) through 1(white) 
interval. To fit this image to CNN operation, brightness 
of the image is converted from [0,1] to [-1,1]. According 
the same rule, brightness of the CNN output image is 
converted from [-1,1] to [0,1].Then CNN works with tem-
plates belonging with first chromosome. After the CNN 
output appears as stable, cost function is computed 
between this output image and target image which we 
want to obtain. This process is repeated with template 
sets belongs each chromosomes in the population. Cost 
function has been selected in this study as follow
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3.3 Time multiplexing simulation approach 
In this procedure it is possible to define a block of CNN 
processors which will process a subimage whose number 
of pixels is equal to the number of CNN processors in the 
block. The processing within this subimage follows the raster 
approach adapted in Chua and Yang (1988b). Once conver-
gence is achieved, a new subimage is processed. The same 
approach is being carried out until the whole image has been 
scanned. It is clear that with this approach the hardware im-
plementation becomes feasible since the number of CNN 
processors is finite. Also, the entire image is scanned only 
once since each block is allowed to fully converge. An impor-
tant point is to be noticed that the processed border pixels 
in each subimage may have incorrect values since they are 
processed without neighboring information only local inter-
actions are important for the latency of CNNs. To overcome 
the aforementioned problem two sufficient conditions must 
be considered while performing time-multiplexing simula-
tion. Alternatively, to ensure that each border cell properly 
interacts with its neighbors it is necessary to have the fol-
lowing. (1) To have a belt of pixels from the original image 
around the subimage and (2) to have pixel overlaps between 
adjacent subimages. 

It is possible to quantize the processing error of any border 
cell Cij with neighborhood radius of 1. By computing inde-
pendently the error owing to the feed forward operator and 
interaction among cells for the two horizontally adjacent pro-
cessing blocks, the absoulte processing error owed only to 
the effect of the B template is obtained by subtracting the 
erroneous state value from the error free states using 

4  Numerical Integration Methods
four of the single-step numerical integration algorithms used 
in the CNN behavioral simulator described here. They are 
Euler, RK4(2), RK4(3) and  RK8(6).

4.1  The Proposed  Methods
R.Ponalagusami and S.Senthilkumar introduced Time-
Multiplexing CNN using Limiting Formula RK (7,8) 
(R.Ponalagusami and S.Senthilkumar 2008). In this paper, we 
consider the same problem but by using  different approach-
es RK4(2) ,RK4(3) and RK8(6).

4.1.1  Stepsize selection algorithm. 
There are currently two widely used methods that have ap-
peared in the literature for changing the stepsize of p (q)-
order RK codes. The first is to apply the formula (see [9])

 (10)

Where f1 is a safety factor and the new sought-after stepsize 
hn+1 = xn+1 - xn is predicted in terms of an estimate of the local 
error ESTn which is based on the approximation
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 to be the pth-, qth-order approximate solu-

tions, respectively, at the previous grid point xn and TOL the 
requested tolerance. If
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Then  the computed solution yn+1 is accepted and the in-
tegration is carried out, otherwise(5) is reevaluated by  sub-
stituting
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This methodology is termed the error per step (EPS) mode 
(see Shampine [10]).

An alternative is to consider the same algorithm (5), but to 
use, instead of (6), the approximation
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This is called error per unit step (EPUS) [10].

4.1.2   RK4(2) and RK4(3) at n = 4 
According to [8], The equations of RK4(2) and RK4(3) are:

Therefore, the final integration is a weighted sum of the five 
calculated derivates is given:

 
The difference between Rk4(2) and RK4(3) is the local trunca-
tion error in the case of RK4(2) is given by using the RK(2)i.e. 

But local truncation error in the case of RK4(3) is given by 
using the RK(3)i.e.

5 Conclusion 
As researchers are coming up with more and more CNN 
applications, an efficient and powerful simulator is needed. 
So we use simulated annealing in optimizing CNN using 
the numerical integrations, especially using RK4(2), RK4(3) 
and RK8(6) for more efficiency with genetic algorithms.  The 
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simulator hereby presented meets the need in six ways: 1) 
Depending on the accuracy required for the simulation, the 
user can choose from three numerical methods to perform 
the numerical integration, 2) The input image format is JPEG, 
which is commonly available, 3) The input image can be of 
any size, allowing simulation of images available in common 
practices, 4) CPU time of our methods is better than those  
in  the literature,   5 ),  the quality measures of the pictures 
and the edge detection  for our method is better than those 
in the literature.
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