
INDIAN JOURNAL OF APPLIED RESEARCH X 87

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR Computer Science

Optimizing Time-multiplexing Raster Cellular Neural
Network simulator using genetic algorithms with

RK8(6)

O. H. Abdelwahed M. El-Sayed Wahed O. Mohamed Eldaken
Department of Computer Science

Faculty of Computers and Information, Suez Canal University, EGYPT

Keywords single-layer Cellular neural networks, genetic algorithms, RK4(2),RK4(3) and RK8(6)

ABSTRACT In this research, a versatile algorithm for simulating CNN arrays and time multiplexing is implemented using
numerical integration algorithms; RK4(2), RK4(3) and RK8(6) and. The approach, time-multiplexing simulation,

plays a pivotal role in the area of simulating hardware models and testing hardware implementations of CNN. Owing to
hardware limitations in practical sense, it is not possible to have a one-one mapping between the CNN hardware processors
and all the pixels of the image. The simulator is capable of performing CNN simulations for any size of input image, thus a
powerful tool for researchers investigating potential applications of CNN. This paper presents proper CNN templates for
edge detection in image processing. Training of CNN is done by using genetic algorithm

1 Introduction
In this paper, we focus on edge detection which is much
significant in various application as virtual reality, intelligent
human-computer interface and TV-conference, security sys-
tem.[18,19,20]. First step in edge detection is locating face
and facial features [18],[19]. Then, the detected edges have
to be normalized and recognized by specially designed clas-
sifier. In this study, we find the facial features and face region
using CNN templates estimated by using genetic algorithms.

Most of the widely applied genetic cellular neural networks
fall into two main classes: (1) memoryless cellular neural
networks and (2) dynamical cellular neural networks. As in
Hopfield networks (HN) and CNN, dynamical neural networks
have usually been designed as dynamical systems where the
inputs are set to some constant values and each trajectory
approaches one of the stable equilibrium points depending
upon the initial state. Cellular Neural Network is a large-scale
non-linear analog circuits which processes signals in real
time[2]. The network behavior of CNN depends on the initial
state of the cells activation, namely bias I and on weights
values of A and B matrices which are associated with the
connections inside the well-defined neighborhood of each
cell. There are many approaches in estimation of A,B, I ma-
trices. Here we prefer genetic algorithm. Genetic algorithm
is a learning algorithm based on the mechanism of natural
selection and genetics, which have proved to be effective
in a number of applications. It works with a binary coding of
the parameter set, searches from a number of points of the
parameter space. It uses only the cost function during the
optimization, it need not derivatives of the cost function or
other information. [16-22].

2 Cellular Neural Networks
Like cellular automata, the CNN is made of a massive ag-
gregate of regularly spaced circuits clones, called cells, which
communicate with each other directly only through nearest
neighbors. In Figure 2, each cell is modeled as squares. The
adjacent cells can interact directly with each other. Cells not
directly connected together may affect each other indirectly
because of the propagation effects of the continuous-time
dynamics of cellular neural networks. An example of a two-
dimensional CNN is shown in Figure 3. Now let us define the
neighborhood of C(i,j).

Definition : r-neighbourhood
The r-neighbourhood of a cell C(i,j) , in a cellular neural net-
work is defined by,

() (){ } { } }
)1(1;1

,max,,

NlMk

rjliklkCjiN r

≤≤≤≤

≤−−=

where r is a positive integer number.

Figure 3 shows neighborhoods of the C(i,j) cell (located at
the center and shaded) with r=1 and 2,respectively. To show
neighbourhood relations more clearly, the center pixel is col-
oured as black and related pixels in brown in Figure 3 and 4.
Cells are multiple input-single output nonlinear processors all
described by one, or one among several different, paramet-
ric functionals. A cell is characterized by a state variable, that
is generally not observable as such outside the cell itself. It
contains linear and non-linear circuit elements such as linear
resistors, capacitors and non-linear controlled sources (Fig-
ures 4 and 5).

Every cell is connected to other cells within a neighborhood
of itself. In this scheme, information is only exchanged be-
tween neighbouring neurons and this local information char-
acteristic does not prevent the capability of obtaining global
processing. The CNN is a dynamical system operating in con-
tinuous or discrete time. A general form of the cell dynamical
equations may be stated as follows:

 (2)

where x,y,u,I denote respectively cell state, output, input,
bias and j and k are cell indices. CNN parameter values are
assumed to be spaced-invariant and the nonlinear fuction is
chosen as piece-wise linear (Figure 5). Since we use discrete
2-D images, Equation (2) is rewritten as,

with A, B and I being cloning template matrices that are iden-
tically repeated in the neighbourhood of every neuron as,

88 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR

)4(,

1,10,11,1

1,00,01,0

1,10,11,1

1,10,11,1

1,00,01,0

1,10,11,1

IB

A

bab
bbb
bbb
aaa
aaa
aaa

=

=

−−

−−

−−−−

−−

−−

−−−−

The network behaviour of CNN depends on the initial state
of the cells activation, namely bias I and on weights values of
A and B matrices which are associated with the connections
inside the well-defined neighbourhood of each cell. CNN’s
are arrays of locally and regularly interconnected neurons,
or, cells, whose global functionality are defined by a small
number of parameters (A,B, I) that specify the operation of
the component cells as well as the connection weights be-
tween them. CNN can also be considered as a nonlinear
convolution with the template. Cells can be characterized by
a functional block diagram that is typical of neural network
theory: Figure 4 depicts a two-stage functional block dia-
gram of a cell, composed of a generalized weighted sum (in
general nonlinear with memory) integration, output nonlinear
function/functional. Data can be fed to the CNN through two
different ports: initial conditions of the state and proper input
u. Bias values I may be used as a third port.

The network behaviour of CNN depends on the initial state
of the cells activation, namely bias I and on weights values of
A and B matrices which are associated with the connections
inside the well-defined neighbourhood of each cell. CNN’s
are arrays of locally and regularly interconnected neurons, or,
cells, whose global functionality are defined by a small num-
ber of parameters (A,B, I) that specify the operation of the
component cells as well as the connection weights between
them. CNN can also be considered as a nonlinear convolu-
tion with the template. Since the introduction of Chua [2],
CNN has attracted a lot of attention. Not only from a theoret-
ical point of view these systems have a number of attractive
properties, but furthermore there are many well-known ap-
plications like image processing, motion detection, pattern
recognition, simulation. The reduced number of connections
within a local neighbourhood, the principle of cloning tem-
plate etc., turn out to be advantage of CNN’s.

3 Behavioral Simulation
Recall that equation (1) is space invariant, which means that
A(i,j;k,l) = A(i-k,j-1) and B(i,j;k,l) = B(i,k;,j,l) for all i,j,kl.

Therefore, the solution of the system of difference equations
can be seen as a convolution process between the image
and the CNN processors. The basic approach is to imagine
a square subimage area centered at (x,y), with the subimage
being the same size of the templates involved in the simula-
tion. The center of this subimage is then moved from pixel to
pixel starting, say, at the top left comer and applying the A
and B templates at each location (x,y) to solve the differential
equation. This procedure is repeated for each time step, for
all the pixels. An instance of this image scanning-processing
is referred to as an “iteration”. The processing stops when
it is found that the states of all CNN processors have con-
verged to steady-state values[2] and the outputs of its neigh-
bor cells are saturated, e.g. they have a +1 value.

This whole simulating approach is referred to as raster simu-
lation. A simplified algorithm is presented below for this
approach. The part where the integration is involved (i.e.
calculation of the next state) is explained in the Numerical
Integration Methods section.

In the following two subsections we will discuss genetic algo-
rithms and edge detection by CNN and genetic algorithms.

3.1 Genetic Algorithms
In the estimation of A.B. and I matrices of CNN, we use ge-

netic algorithms. Genetic algorithm is a learning algorithm
based on the mechanism of natural selection and genetics,
which have proved to be effective in a number of applications.
It works with a binary coding of the parameter set, searches
from a number of points of the parameter space. It uses only
the cost function during the optimization, it need not deriva-
tives of the cost function or other information. [11,12]. Pro-
cesses of natural selection cause chromosomes that encode
successful structures to reproduce more often than those that
do not. In addition to reproduction, mutations may cause the
chromosomes of children to be different from those of their
biological parents, and crossing over processes create dif-
ferent chromosomes in children by changing the some parts
of the parent chromosomes between each other. Like na-
ture, genetic algorithms solve the problem of finding good
chromosomes by manipulating in the chromosomes blindly
without any knowledge about the problem they are solving.
[12]. The underlying principles of GA were first published by
Holland in1962, [13]. The mathematical framework was de-
veloped in the 1960s and is presented in his pioneering book
in 1975 [14]. In optimization applications, they have been
used in many diverse fields such as function optimization, im-
age processing, the traveling salesperson problem, system
identification and control. A high-level description of GA has
been done by Davis in 1991 as follows. [15] Given a way or
a method of encoding solutions of problem into the form of
chromosomes and given an evaluation function that returns a
measurement of the cost value of the following steps:

Step1: Initialize a population of chromosomes

Step2: Evaluate each chromosomes in the population.

Step3: Create new chromosomes by mating current chro-
mosomes; apply mutation and recombination as the parent
chromosomes mate.

Step4: Delete members of the population to make room for
new chromosomes.

Step5: Evaluate the new chromosomes and insert them into
the population.

Step6: If the stopping criterion is satisfied, then stop and re-
turn the best chromosome; otherwise, go to step3

3.2 Edge detection by CNN and genetic algorithms
In this work, proper CNN templates are described to locate
edge detection in image by using genetic algorithms. For
this aim, CNN templates are designed so that they satisfy
the stability. So, A and B templates are selected as symmet-
ric. Because of selecting size of templates as 3*3, totally 11
template parameters are searched. One of these parameters
is offset, five of them belongs the A matrix, and the other
five parameters belongs the B matrix. Each parameter are en-
coded by 16 bits in chromosomes. So, the length of chromo-
somes has been selected as 176 bits. In training process, 72
chromosomes are constructed as initial population randomly.
The number of population is kept constant as 72 during the
algorithm. Mutation probability m p has been set % 1. Train-
ing process includes these steps as follows.

(i). Construct initial population; A matrix is constructed
called as population matrix. Each row of the population
matrix represents chromosomes. Because of selecting
number of chromosomes is 72, there are 72 rows in pop-
ulation matrix. Number of columns of this matrix is 176,
because there are 176 bits in each chromosome. At the
beginning this matrix is constructed randomly.

(ii). Extract the CNN template: Chromosomes represents the
binary codes of the elements of the CNN template A,B,
I . In this step, each chromosomes are decoded the ele-
ments of the CNN are computed in [-8,8] interval. Since
each element is coded as 16 bits, each parameter can
take 216 different value in [-8,8] interval. In each chro-

INDIAN JOURNAL OF APPLIED RESEARCH X 89

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR

mosomes first 11 bits represents first bits of the template
elements. And second 11 bits of chromosomes repre-
sents the second bits of the template elements and so
on. These elements are

 (5)

(iv). Evaluate cost function value for each chromosomes; In
this step, an image which was selected as training im-
age is given as input to CNN. Normally in this gray-level
image, brightness varies in 0 (black) through 1(white)
interval. To fit this image to CNN operation, brightness
of the image is converted from [0,1] to [-1,1]. According
the same rule, brightness of the CNN output image is
converted from [-1,1] to [0,1].Then CNN works with tem-
plates belonging with first chromosome. After the CNN
output appears as stable, cost function is computed
between this output image and target image which we
want to obtain. This process is repeated with template
sets belongs each chromosomes in the population. Cost
function has been selected in this study as follow

).6(),,(,,∑∑ ⊕=
M

i

N

j
jiji TPIBACost

3.3 Time multiplexing simulation approach
In this procedure it is possible to define a block of CNN
processors which will process a subimage whose number
of pixels is equal to the number of CNN processors in the
block. The processing within this subimage follows the raster
approach adapted in Chua and Yang (1988b). Once conver-
gence is achieved, a new subimage is processed. The same
approach is being carried out until the whole image has been
scanned. It is clear that with this approach the hardware im-
plementation becomes feasible since the number of CNN
processors is finite. Also, the entire image is scanned only
once since each block is allowed to fully converge. An impor-
tant point is to be noticed that the processed border pixels
in each subimage may have incorrect values since they are
processed without neighboring information only local inter-
actions are important for the latency of CNNs. To overcome
the aforementioned problem two sufficient conditions must
be considered while performing time-multiplexing simula-
tion. Alternatively, to ensure that each border cell properly
interacts with its neighbors it is necessary to have the fol-
lowing. (1) To have a belt of pixels from the original image
around the subimage and (2) to have pixel overlaps between
adjacent subimages.

It is possible to quantize the processing error of any border
cell Cij with neighborhood radius of 1. By computing inde-
pendently the error owing to the feed forward operator and
interaction among cells for the two horizontally adjacent pro-
cessing blocks, the absoulte processing error owed only to
the effect of the B template is obtained by subtracting the
erroneous state value from the error free states using

4 Numerical Integration Methods
four of the single-step numerical integration algorithms used
in the CNN behavioral simulator described here. They are
Euler, RK4(2), RK4(3) and RK8(6).

4.1 The Proposed Methods
R.Ponalagusami and S.Senthilkumar introduced Time-
Multiplexing CNN using Limiting Formula RK (7,8)
(R.Ponalagusami and S.Senthilkumar 2008). In this paper, we
consider the same problem but by using different approach-
es RK4(2) ,RK4(3) and RK8(6).

4.1.1 Stepsize selection algorithm.
There are currently two widely used methods that have ap-
peared in the literature for changing the stepsize of p (q)-
order RK codes. The first is to apply the formula (see [9])

 (10)

Where f1 is a safety factor and the new sought-after stepsize
hn+1 = xn+1 - xn is predicted in terms of an estimate of the local
error ESTn which is based on the approximation

,
^

yyEST nnn −≈
Assuming yy nn

^

,
 to be the pth-, qth-order approximate solu-

tions, respectively, at the previous grid point xn and TOL the
requested tolerance. If

 ,TOLEST n ≤

Then the computed solution yn+1 is accepted and the in-
tegration is carried out, otherwise(5) is reevaluated by sub-
stituting

ESTEST nn 1+→

This methodology is termed the error per step (EPS) mode
(see Shampine [10]).

An alternative is to consider the same algorithm (5), but to
use, instead of (6), the approximation

,
h

yy
EST

n

n
n

n

∧

−
≅

This is called error per unit step (EPUS) [10].

4.1.2 RK4(2) and RK4(3) at n = 4
According to [8], The equations of RK4(2) and RK4(3) are:

Therefore, the final integration is a weighted sum of the five
calculated derivates is given:

The difference between Rk4(2) and RK4(3) is the local trunca-
tion error in the case of RK4(2) is given by using the RK(2)i.e.

But local truncation error in the case of RK4(3) is given by
using the RK(3)i.e.

5 Conclusion
As researchers are coming up with more and more CNN
applications, an efficient and powerful simulator is needed.
So we use simulated annealing in optimizing CNN using
the numerical integrations, especially using RK4(2), RK4(3)
and RK8(6) for more efficiency with genetic algorithms. The

90 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR

simulator hereby presented meets the need in six ways: 1)
Depending on the accuracy required for the simulation, the
user can choose from three numerical methods to perform
the numerical integration, 2) The input image format is JPEG,
which is commonly available, 3) The input image can be of
any size, allowing simulation of images available in common
practices, 4) CPU time of our methods is better than those
in the literature, 5), the quality measures of the pictures
and the edge detection for our method is better than those
in the literature.

REFERENCE [1] R.Ponalagusami and S.Senthilkumar(2008). “Time-Multiplexing CNN Simulation using Limiting Formula RK(7,8)”.Research Journal of
Information Technology 1(1):1-16. | [2] L. 0. Chua and L. Yang(1988). “Cellular Neural Networks: Theory & Applications,” IEEE Trans. Circuits

and Systems, Vol. CAS-35, pp. 1257-1290. | [3] L.O. Chua and T. Roska(1992). “The CNN Universal Machine Part 1: The Architecture”, in Int.　Workshop on Cellular
Neural Networks and their Applications (CNNA), pp. 1-10. | [4] J. A. Nossek, G. Seiler, T. Roska and L. 0. Chua (1992.). “Cellular Neural Networks: Theory and Circuit
Design,” International Journal of Circuit Theory and Applications, Vol. 20, pp. 533-553. | [5] J. Varrientos and E. Sanchez-Sinencio(1992), “CELLSIM: A cellular neural
network simulator for the personal computer,” in Proc. 35th Midwest Symp. Circuits Systs, pp. 1384-1387. | [6] W. H. Press, B. P. Flannery, S.A. Teukolsky, and W.T.g
Vetterling(1986). “Numerical Recipes. The Art of Scientific Computing”, Cambridge University Press, New York. | [7] P.J.M. van Laarhoven and E.H.L. Aarts, (1987)
Simulated Annealing: Theory and Application. ISBN 90-277-2513-6 | [8] Ch. Tsitouras and S. N. Papakostas(1991) “Cheap Error methods for Runge-Kutta methods
”, SIAM J. SCI. COMPUT, Society for Industrial and Applied Mathematics, Vol. 20, No. 6, pp. 2067-2088. | [9] T. E. Hull, W. H. Enright, B. M. Fellen, and A. E.
Sedgwick(1972), Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal., 9 , pp. 603{637. | [10] L. F. Shampine(1986), Some practical
Runge-Kutta formulas, Math. Comp., 46 , pp. 135{150. | [11] T. Sziranyi, M. Csapodi, ‘‘ Texture Classification and Segmentation by Cellular Neural Network Using
Genetic Learning’’, Research Report ,Budapest,Hungary, November,1994 | [12] C.T. Lin, C.S. George Lee ‘‘ Neural Fuzzy Systems ’’ , Prentice-Hall Inc., New Jersey,
1995. | [13] J.H. Holland, ‘‘Outline for a logical theory of adaptive systems.’’, J. Assoc. Computing. Mach. 3:297-314, | [14] J.H. Holland, ‘‘Adaptation in neural and
artificial systems’’, Ann Arbor, MI: University of the Michigan Press, 1975 | [15] L. Davis,‘‘Handbook of Genetic Algorithms’’ New York:Van Nostrand, Reinhold,1991.
| 1988 | [16] T. Kozek, T. Roska, L.O. Chua, :‘‘Genetic Algorithms for CNN template Learning’’, IEEE Trans. On Circuit and Systems, Vol.40, No.6 pp. 392-402, 1988 |
[17] T. Sziranyi, M. Csapodi, ‘‘ Texture Classification and Segmentation by Cellular Neural Network Using Genetic Learning’’, Research Report ,Budapest,Hungary, |
November,1994 | [18] J.Hu, H.Yan, M. Sakalli, ‘‘Locating head and face boundaries for head-shoulder images’’, Pattern Recognition 32 (1999) 1317- | 1333 | [19] A.
Samal, P.A. Iyengar, ‘‘Automatic recognition and analysis of human faces and facial expressions : a survey’’, Pattern Recognition 25 (1) (1992) 65-77 | [20] R. Chellappa,
C.L. Wilson, S. Sirohey, ‘‘Human and machine recognition faces: a survey’’, Proc. IEEE 83 (5) (1995) 705-740. | [21] S.H. Jeng, H.Y.M. Liao, C.C.Han, M.Y. Chern, Y.T.Liu
‘‘Facial feature dedection using | geometrical face model: an efficient approach’’ | [22] C.T. Lin, C.S. George Lee ‘‘ Neural Fuzzy Systems ’’ , Prentice-Hall Inc., New
Jersey, | 1995.

