
INDIAN JOURNAL OF APPLIED RESEARCH X 91

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR Computer Science

Optimizing Single Layer Cellular Neural Network
Simulator using Simulated Annealing Technique with

Neural Networks

O. H. Abdelwahed M. El-Sayed Wahed
Department of Computer Science, Faculty of Computers and Information, Suez Canal University, EGYPT

Keywords single-layer Cellular neural networks, numerical integration algorithms, simulated
annealing, neural networks

ABSTRACT An efficient numerical integration algorithm using simulated annealing with neural networks for single layer
Raster Cellular Neural Networks (CNN) simulator is presented in this work. The simulator is capable of per-

forming CNN simulations for any size of input image, thus a powerful tool for researchers investigating potential applica-
tions of CNN. The goal is to provide optimal control with reduced calculus effort by comparing the solutions of the MRDE
obtained from the well known traditional Runge Kutta(RK)method and nontraditional neural network method. Accuracy of
the neural solution to the problem is qualitatively better.

1 Introduction
Neural networks or simply neural nets are computing sys-
tems, which can be trained to learn a complex relationship
between two or many variables or data sets. Having the
structures similar to their biological counterparts, neural
networks are representational and computational models
processing information in a parallel distributed fashion com-
posed of interconnecting simple processing nodes [26]. Neu-
ral net techniques have been successfully applied in various
fields such as function approximation, signal processing and
adaptive (or) learning control for nonlinear systems. Using
neural networks, a variety of off-line learning control algo-
rithms have been developed for nonlinear systems [17, 22].
A variety of numerical algorithms have been developed for
solving the algebraic Riccati equation. In recent years, neu-
ral network problems have attracted considerable attention
of many researchers for numerical aspects for algebraic Ric-
cati equations see [9, 13, 14, 27]. Singular systems contain a
mixture of algebraic and differential equations. In that sense,
the algebraic equations represent the constraints to the solu-
tion of the differential part. These systems are also known as
degenerate, descriptor or semi-state and generalized state-
space systems. The complex nature of singular system causes
many difficulties in the analytical and numerical treatment of
such systems, particularly when there is a need for their con-
trol. The system arises naturally as a linear approximation of
system models or linear system models in many applications
such as electrical networks, aircraft dynamics, neutral delay
systems, chemical, thermal and diffusion processes, large-
scale systems, robotics, biology, etc., see [10, 11, 18]. Most
of the research on nonlinear singular systems has focused
primarily on issues related to solvability and numerical solu-
tions for such systems. The literature on feedback control of
nonlinear singular systems is sparse. The feedback stabiliza-
tion problem for nonlinear singular systems is addressed by
McClamroch [21]. In this paper, we make use of a result that
generalizes the LQ theory to nonlinear systems to provide a
nonlinear design method [20]. This nonlinear quadratic (NLQ)
method applies to systems having a broad class of nonlinear
dynamics with state dependent weighting matrices. In brief,
it turns out that the infinite time horizon LQ regulator prob-
lem, when solved afresh at every point on the state trajec-
tory, leads to an asymptotically optimal control policy. The
LQ regulator problem converges to the optimal control close
to the origin.

CNN is a hybrid of Cellular Automata and Neural Networks
(hence the name Cellular Neural Networks), and it shares
the best features of both worlds. Like Neural Networks, its
continuous time feature allows real-time signal processing,
and like Cellular Automata, its local interconnection fea-

ture makes VLSI realization feasible. The basic circuit unit of
CNN is called a [2]. It contains linear and nonlinear circuit
elements. Any cell, C(i,j), is connected only to its neighbor
cells, i.e. adjacent cells interact directly with each other. This
intuitive concept is called neighborhood and is denoted as
N(i,j). Cells not in the immediate neighborhood have indirect
effect because of the propagation effects of the dynamics of
the network. Each cell has a state x input U, and output y. The
state of each cell is bounded for all time t > U and, after the
transient has settled down, a cellular neural network always
approaches one of its stable equilibrium points. This last fact
is relevant because it implies that the circuit will not oscillate.
The dynamics of a CNN has both output feedback (A) and
input control (B) mechanisms. The first order nonlinear dif-
ferential equation defining the dynamics of a cellular neural
network cell can be written as follows:

Where is the state of cell is the initial condition
of the cell, C is a linear capacitor, R is a linear resistor, I is
an independent current source, A(i,j;k,l)ykl and B{i,j;k,l)ukl are
voltage controlled current Sources for all cells C(k,l) in the
neighborhood N(ij) of cell C(ij), and yij represents the output
equation.

Notice from the summation operators that each cell is affect-
ed by its neighbor cells. A(.) acts on the output of neighbor-
ing cells and is referred to as the feedback operator. B(.) in
turn affects the input control and is referred to as the control
operator. Specific entry values of matrices A(.) and B(.) are ap-
plication dependent, are space invariant and are called clon-
ing templates. A current bias Z and the cloning templates
determine the transient behavior of the cellular nonlinear
network.

CNNs have as input a set of analog values and its program-
mability is done via cloning templates.Thus, programmability
is one of the most attractive properties of CNNs, but how to
choose the optimal network and how to program it to per-
form a given task are still topics under investigation. This is
the reason why there is a need for behavioral CNN simulator
capable of helping investigators design and manipulate clon-
ing templates (“programming”). Existent tools are not meant

92 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR

to deal with a significant number of pixels typical in common
image processing applications [5]. The simulator presented
here not only satisfies this need, but it also can be used for
testing CNN hardware implementations. El-Sayed Wahed
and O.H. Abdel wahed[8] introduced an efficient numerical
integration algorithm for Single-Layer Raster Cellular Neu-
ral Networks Simulator. In this paper, we consider the same
problem but by using RK4 and neural networks.

2 Behavioral Simulation
Recall that equation (1) is space invariant, which means that
A(i,j;k,l) = A(i-k,j-1) and B(i,j;k,l) = B(i,k;j,l) for all i,j,k,l.

Therefore, the solution of the system of difference equations
can be seen as a convolution process between the image
and the CNN processors. The basic approach is to imagine
a square subimage area centered at (x,y), with the subimage
being the same size of the templates involved in the simula-
tion. The center of this subimage is then moved from pixel to
pixel starting, say, at the top left comer and applying the A
and B templates at each location (x,y) to solve the differential
equation. This procedure is repeated for each time step, for
all the pixels. An instance of this image scanning-processing
is referred to as an “iteration”. The processing stops when
it is found that the states of all CNN processors have con-
verged to steady-state values [2] and the outputs of its neigh-
bor cells are saturated, e.g. they have a +1 value.

This whole simulating approach is referred to as raster simu-
lation. A simplified algorithm is presented below for this
approach. The part where the integration is involved (i.e.
calculation of the next state) is explained in the Numerical
Integration Methods section.

In the following two subsections we will discuss simulated
annealing algorithm and the mathematical modeling used in
simulated annealing and our proposed simulator.

2.1 The Simulated Annealing Algorithm
In the early 1980s Kirkpatrick et al. (1983) and independently
Cemy (1985) introduced the concepts of annealing in combi-
natorial optimization. Originally these concepts were heavily
inspired by an analogy between the physical annealing pro-
cess of solids and the problem of solving large combinatorial
optimization problems. Since this analogy is quite appealing
we use it here as a background for introducing simulated an-
nealing. In condensed matter physics, annealing is known as
a thermal process for obtaining low energy states of a solid in
a heat bath. The process consists of the following two steps:

• increase the temperature of the heat bath to a maximum
value at which the solid melts;

• decrease carefully the temperature of the heat bath until
the particles arrange themselves in the ground state of
the solid.

In the liquid phase, all particles arrange themselves random-
ly, whereas in the ground state of the solid, the particles are
arranged in a highly structured lattice, for which the corre-
sponding energy is minimal. The ground state of the solid
is obtained only if the maximum value of the temperature
is sufficiently high and the cooing is performed sufficiently
slowly. Otherwise, the solid will be frozen into a meta-stable
state rather than into the true ground state.

Metropolis et al. [7] introduced a simple algorithm for simu-
lating the evolution of a solid in a heat bath to thermal equi-
librium. Their algorithm is based on Monte Carlo techniques
and generates a sequence of states of the solid in the fol-
lowing way.

Given a current state i of the solid with energy Ei, then a
subsequent state j is generated by applying a perturbation
mechanism which transforms the current state into a next
state by a small distortion, for instance by displacement of
a particle. The energy of the next state is Ej. If the energy

difference, Ej— Ei, is less than or equal to zero, the state j
is accepted as the current state. If the energy difference is
greater than zero, then the state j is accepted with a prob-
ability given by

 −

Tk
EE

B

jiexp (2)

where T denotes the temperature of the heat bath and KB is
a physical constant called the Boltzmann constant. The ac-
ceptance rule described above is known as the Metropolis
criterion and the algorithm that goes with it is known as the
Metropolis algorithm. It is known that, if the lowering of the
temperature is done sufficiently slowly, the solid can reach
thermal equilibrium at each temperature. In the Metropohs
algorithm this is achieved by generating a large number of
transitions at a given value of the temperature. Thermal equi-
librium is characterized by the Boltzmann distribution, which
gives the probability of the solid of being in a state with en-
ergy Ei at temperature T, and which is given by

{ } ()
())3(

/exp
/exp

∑ −
−

==

j
Bi

Bi
T TkE

TkE
iXP

where X is a random variable denoting the current state of
the solid and the summation extends over all possible states.
As we indicate below, the Boltzmann distribution plays an
essential role in the analysis of the convergence of simulated
annealing. Returning to simulated annealing, the Metropolis
algorithm can be used to generate a sequence of solutions
of a combinatorial optimization problem by assuming the fol-
lowing equivalences between a physical many-particle sys-
tem and a combinatorial optimization problem:

• solutions in the combinatorial optimization problem are
equivalent to states of the physical system;

• the cost of a solution is equivalent to the energy of a
state.

Furthermore, we introduce a control parameter which plays
the role of the temperature. Simulated annealing can thus be
viewed as an iteration of Metropolis algorithms, executed at
decreasing values of the control parameter.

We can now let go of the physical analogy and formulate
simulated annealing in terms of a local search algorithm. To
simplify the presentation, we assume, in the remainder of this
chapter, that we are dealing with a minimization problem.
The discussion easily translates to maximization problems.
For an instance (S, f) of a combinatorial optimization problem
and a neighborhood function .The meaning of the four func-
tions in the below procedure in fig. 2. is obvious: INITIALIZE
computes a start solution and initial values of the parameters
c and L; GENERATE selects a solution from the neighbor-
hood of the current solution; CALCULATE.LENGTH and CAL-
CULATE_CONTROL compute new values for the parameters
L and c, respectively.

As already mentioned, a typical feature of simulated anneal-
ing is that, besides accepting improvements in cost, it also
accepts deteriorations to a limited extent. Initially, at large
values of c, large deteriorations will be accepted; as c de-
creases, only smaller deteriorations will be accepted and,
finally, as the value of c approaches 0, no deteriorations will
be accepted at all.

The below is the algorithm of simulated annealing:

procedure SIMULATED ANNEALING;

begin

INITIALIZE (istart, Co, Lo)

k:=0;

INDIAN JOURNAL OF APPLIED RESEARCH X 93

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR

repeat

for i := 1 to Lk do

begin

GENERATE (j from Si);

i f f(j) ≤ f(i) then i := j

else

 random[0, 1) then i := j

end;

k:= k + 1;

CALCULATE_LENGTH (Lk);

CALCULATE_CONTROL(ck);

until stop criterion

end;

2.2 The Mathematical Model and the proposed simulator
Simulated annealing can be mathematically modeled by
means of Markov chains. In this model, we view simulated an-
nealing as a process in which a sequence of Markov chains is
generated, one for each value of the control parameter. Each
chain consists of a sequence of trials, where the outcomes of
the trials correspond to solutions of the problem instance.

Let {S, f) be a problem instance, N a neighborhood function,
and X(k) a stochastic variable denoting the outcome of the
kth trial. Then the transition probability at the kth trial for
each pair i, j € S of outcomes is defined as

where Gij (ck) denotes the generation probability, i.e. the
probability of generating a solution j when being at solution
i, and Gij,/ (ck) denotes the acceptance probability, i.e. the
probability of accepting solution j , once it is generated from
solution i. The most frequently used choice for these prob-
abilities is the following:

Gij(ck) =

 (5)

And

Aj(ck) =

 (6)

For fixed values of c, the probabilities do not depend on k,
in which case the resulting Markov chain is time-independent
or homogeneous. Using the theory of Markov chains it is
fairly straightforward to show that, under the condition that
the neighborhoods are strongly connected—in which case
the Markov chain is irreducible and periodic—there exist a
unique stationary distribution of the outcomes. This distribu-
tion is the probability distribution of the solutions after an

infinite number of trials.

The following is the Time-Multiplexing CNN simulation with
Simulated Annealing:

Algorithm: (Single-Layer CNN simulation with Simulated An-
nealing)

Obtain the input image, initial conditions and templates from
user;

/* M,N = # of rows/columns of the image */

/* APPLY SIMULATED ANNEALING */

begin

INITIALIZE (istart, Co, Lo);

k:=0;

repeat

for i := 1 to Lk do

begin

GENERATE (j from Si);

i f f(j) ≤ f(i) then i := j

else

 random[0, 1) then i := j

end;

k:= k + 1;

CALCULATE_LENGTH (Lk);

CALCULATE_CONTROL(ck);

until stopcriterion

end;

/* Use the optimized parameters from the simulated anneal-
ing */

while (converged-cells < total # of cells) (

for (i=l; i<=M; i++)

for (j=l; j<=N; j++) (

if (convergence-flag[i][j])

/* calculation of the next state*/

continue; /* current cell already converged */

/* convergence criteria */

{
convergence-flag[i][j] = 1;

converged-cells++ ;

94 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR

REFERENCE [1] J. Abdul Samath and N. Selvaraju(2010). “ Solution of matrix Riccati differential equation for nonlinear singular system using neural
networks”. International Journal of Computer Applications (0975 - 8887) Volume 1 – No. 29. | [2] L. 0. Chua and L. Yang(1988). “Cellular Neural

Networks: Theory & Applications,” IEEE Trans. Circuits and Systems, Vol. CAS-35, pp. 1257-1290. | [3] L.O. Chua and T. Roska(1992). “The CNN Universal Machine
Part 1: The Architecture”, in Int.　Workshop on Cellular Neural Networks and their Applications (CNNA), pp. 1-10. | [4] J. A. Nossek, G. Seiler, T. Roska and L. 0. Chua
(1992.). “Cellular Neural Networks: Theory and Circuit Design,” International Journal of Circuit Theory and Applications, Vol. 20, pp. 533-553. | [5] J. Varrientos and
E. Sanchez-Sinencio(1992), “CELLSIM: A cellular neural network simulator for the personal computer,” in Proc. 35th Midwest Symp. Circuits Systs, pp. 1384-1387. | [6]
W. H. Press, B. P. Flannery, S.A. Teukolsky, and W.T.g Vetterling(1986). “Numerical Recipes. The Art of Scientific Computing”, Cambridge University Press, New York. |
[7] P.J.M. van Laarhoven and E.H.L. Aarts, (1987) Simulated Annealing: Theory and Application. ISBN 90-277-2513-6 | [8] M. El-Sayed Wahed and O.H. Abdel wahed
(2012). An efficient numerical integration algorithm for Single-Layer Raster Cellular Neural Networks Simulator. the international Journal of the physical sciences(IJPS),
Vol. 7(47), pp. 6144-6148. | [9] P. Balasubramaniam, J. Abdul Samath and N. Kumaresan, Neuro Approach for solving Matrix Riccati Differential Equations, Neural,
Parallel Sci. Comput., 2 (2007) 125–135. | [10] S. L. Campbell, Singular Systems of Differential Equations, Pitman, Marshfield, MA, 1980. | [11] S. L. Campbell, Singular
Systems of Differential Equations II, Pitman, Marshfield, MA, 1982. | [12] G. Da Prato and A. Ichikawa, Quadratic control for linear periodic systems, Appl. Math.
Optim.,18 (1988), 39–66. | [13] S. W. Ellacott, Aspects of the numerical analysis of neural networks, Acta Numer., 5 (1994), 145–202. | [14] F. M. Ham and E. G. Collins,
A neurocomputing approach for solving the algebraic matrix Riccati equation,Proceedings IEEE International Conference on Neural networks, 1 (1996), 617 – 622. |
[15] M. Jamshidi, An overview on the solutions of the algebraic matrix Riccati equation and related problems, LargeScale Systems, 1 (1980), 167–192. | [16] L. Jodar
and E. Navarro, Closed analytical solution of Riccati type matrix differential equations, Indian J. Pureand Appl. Math., 2 (1992), 185–187. | [17] A. Karakasoglu, S. L.
Sudharsanan and M. K. Sundareshan, Identification and decentralized adaptive control usingneural | networks with application to robatic manipulators, IEEE Trans.
Neural Networks, 4 (1993), 919–930. | [18] F. L. Lewis, A Survey of Linear Singular Systems, Circ. Syst. Sig. Proc., 5(1)(1986), 3–36. | [19] N. Lovren and M. Tomic, Analytic
solution of the Riccati equation for the homing missile linear quadratic control problem, J. Guidance. Cont. Dynamics , 17 (1994), 619–621. | [20] D. Mccaffrey and
S. P. Banks, Lagrangian manifolds and asymptotically optimal stabilizing feedback control, Syst.Control Lett., 43 (2001), 219-224. | [21] N. H. McClamroch, Feedback
stabilization of control systems described by a class of nonlinear differential algebraicequations, Systems Control Lett., 15 (1990), 53–60. | [22] K. S. Narendra and
K. Parathasarathy, Identification and control of dynamical systems using neural networks,　IEEE Trans. Neural networks, 1 (1990), 4–27. | [23] M. Razzaghi, Solution of
the matrix Riccati equation in optimal control, Information Sci., 16 (1978), 61–73. [32] M. Razzaghi, A computational solution for a matrix Riccati differential equation,
Numerical Math., 32 (1979), 271–279. | [24] D. R. Vaughu, A negative exponential solution for the matrix Riccati equation, IEEE Trans Automat. Control, 14 (1969),
72–75. | [25] P. De. Wilde, Neural Network Models, Second ed., Springer-Verlag, London, 1997. | [26] J. Wang and G. Wu, A multilayer recurrent neural network for
solving continuous-time algebraic Riccati equations, Neural Networks, 11 (1998), 939–950. | [27] K. Zhou and Khargonekar, An algebraic Riccati equation approach to
H optimization, Systems Control Lett., 11 (1998), 85–91.

}

} /* end for */

/* update the state values of the whole image*/

for (i=l; i<=M; i++)

for (j=l; j<=N; j++) (

if (convergence-flag[i] [j]) continue;

Xij(tn+1) = Xij(tn);

}

#_of_iteration++;

) /* end while */

The raster approach implies that each pixel is mapped onto

a CNN processor. That is, we have an image processing func-
tion in the spatial domain that can be expressed as:

g(x,y) = T(f(x,y)) (7)

where f(.) is the input image, g(.) the processed image, and T
is an operator on f(.) defined over the neighborhood of (x,y).

3 Numerical Integration Methods
M. El-Sayed Wahed and O.H. Abdel wahed [8] introduced
An efficient numerical integration algorithm for Single-Layer
Raster Cellular Neural Networks Simulator. We consider the
same problem but by using three of the single-step numeri-
cal integration algorithms used in the CNN behavioral simu-
lator described here. They are the RK4 , k11, and k12 used in
our network solution.

4 Simulation Results and Comparisons
The simulation time used for comparisons is the actual CPU
time used. The input image format for this simulator is a
JPEG. format.

method Mean Square
Error

Peak Signal
to Noise
Ratio

MNormalized
Cross-Correlation

Average
Difference

Structural
Content

Maximum
Difference

Normalized
Absolute Error

Runge Kutta
(RK4) 1.7000e+003 11.8021 0.9449 8.8555 1.1055 240 0.0700

K11 1.6900e+003 10.4000 0.9305 6.4432 1.1010 234 0.0480

K12 1.6700e+003 9.9931 0.9998 6.2236 .90910 232 0.0370

Fig.3. Image processing (a) After Averaging Template, (b) Af-
ter Averaging and Edge Detection

Fig. 3 shows results of the raster simulator obtained from a
complex image of 65,536(256x256) pixels. For this example
an Averaging template followed by an Edge Detection tem-
plate were applied to the original image to yield the images
displayed in Figs. 3a and 3b, respectively.

5 Conclusion
The solution of MRDE can be obtained by neural network ap-
proach. A neuro computing approach can yield a solution of
MRDE significantly faster than standard solution techniques
like RK method . As researchers are coming up with more
and more CNN applications, an efficient and powerful simu-
lator is needed. The simulator hereby presented meets the
need in five ways: 1) Depending on the accuracy required
for the simulation, the user can choose from three numerical
methods to perform the numerical integration, 2) The input
image format is JPEG, which is commonly available, 3) The
input image can be of any size, allowing simulation of images
available in common practices, 4) CPU time of our methods is
better than those in the literature, 5), the quality measures of
the pictures and the edge detection for our method is better
than those in the literature.

