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ABSTRACT An efficient numerical integration algorithm using simulated annealing with neural networks for single layer 
Raster Cellular Neural Networks (CNN) simulator is presented in this work. The simulator is capable of per-

forming CNN simulations for any size of input image, thus a powerful tool for researchers investigating potential applica-
tions of CNN. The goal is to provide optimal control with reduced calculus effort by comparing the solutions of the MRDE 
obtained from the well known traditional Runge Kutta(RK)method and nontraditional neural network method. Accuracy of 
the neural solution to the problem is qualitatively better.

1 Introduction
Neural networks or simply neural nets are computing sys-
tems, which can be trained to learn a complex relationship 
between two or many variables or data sets. Having the 
structures similar to their biological counterparts, neural 
networks are representational and computational models 
processing information in a parallel distributed fashion com-
posed of interconnecting simple processing nodes [26]. Neu-
ral net techniques have been successfully applied in various 
fields such as function approximation, signal processing and 
adaptive (or) learning control for nonlinear systems. Using 
neural networks, a variety of off-line learning control algo-
rithms have been developed for nonlinear systems [17, 22]. 
A variety of numerical algorithms have been developed for 
solving the algebraic Riccati equation. In recent years, neu-
ral network problems have attracted considerable attention 
of many researchers for numerical aspects for algebraic Ric-
cati equations see [9, 13, 14, 27]. Singular systems contain a 
mixture of algebraic and differential equations. In that sense, 
the algebraic equations represent the constraints to the solu-
tion of the differential part. These systems are also known as 
degenerate, descriptor or semi-state and generalized state-
space systems. The complex nature of singular system causes 
many difficulties in the analytical and numerical treatment of 
such systems, particularly when there is a need for their con-
trol. The system arises naturally as a linear approximation of 
system models or linear system models in many applications 
such as electrical networks, aircraft dynamics, neutral delay 
systems, chemical, thermal and diffusion processes, large-
scale systems, robotics, biology, etc., see [10, 11, 18]. Most 
of the research on nonlinear singular systems has focused 
primarily on issues related to solvability and numerical solu-
tions for such systems. The literature on feedback control of 
nonlinear singular systems is sparse. The feedback stabiliza-
tion problem for nonlinear singular systems is addressed by 
McClamroch [21]. In this paper, we make use of a result that 
generalizes the LQ theory to nonlinear systems to provide a 
nonlinear design method [20]. This nonlinear quadratic (NLQ) 
method applies to systems having a broad class of nonlinear 
dynamics with state dependent weighting matrices. In brief, 
it turns out that the infinite time horizon LQ regulator prob-
lem, when solved afresh at every point on the state trajec-
tory, leads to an asymptotically optimal control policy. The 
LQ regulator problem converges to the optimal control close 
to the origin. 

CNN is a hybrid of Cellular Automata and Neural Networks 
(hence the name Cellular Neural Networks), and it shares 
the best features of both worlds. Like Neural Networks, its 
continuous time feature allows real-time signal processing, 
and like Cellular Automata, its local interconnection fea-

ture makes VLSI realization feasible. The basic circuit unit of 
CNN is called a [2]. It contains linear and nonlinear circuit 
elements. Any cell, C(i,j), is connected only to its neighbor 
cells, i.e. adjacent cells interact directly with each other. This 
intuitive concept is called neighborhood and is denoted as 
N(i,j). Cells not in the immediate neighborhood have indirect 
effect because of the propagation effects of the dynamics of 
the network. Each cell has a state x input U, and output y. The 
state of each cell is bounded for all time t > U and, after the 
transient has settled down, a cellular neural network always 
approaches one of its stable equilibrium points. This last fact 
is relevant because it implies that the circuit will not oscillate. 
The dynamics of a CNN has both output feedback (A) and 
input control (B) mechanisms. The first order nonlinear dif-
ferential equation defining the dynamics of a cellular neural 
network cell can be written as follows:

Where  is the state of cell  is the initial condition 
of the cell, C is a linear capacitor, R is a linear resistor, I is 
an independent current source, A(i,j;k,l)ykl and B{i,j;k,l)ukl are 
voltage controlled current Sources for all cells C(k,l) in the 
neighborhood N(ij) of cell C(ij), and yij represents the output 
equation.

Notice from the summation operators that each cell is affect-
ed by its neighbor cells. A(.) acts on the output of neighbor-
ing cells and is referred to as the feedback operator. B(.) in 
turn affects the input control and is referred to as the control 
operator. Specific entry values of matrices A(.) and B(.) are ap-
plication dependent, are space invariant and are called clon-
ing templates. A current bias Z and the cloning templates 
determine the transient behavior of the cellular nonlinear 
network. 

CNNs have as input a set of analog values and its program-
mability is done via cloning templates.Thus, programmability 
is one of the most attractive properties of CNNs, but how to 
choose the optimal network and how to program it to per-
form a given task are still topics under investigation. This is 
the reason why there is a need for behavioral CNN simulator 
capable of helping investigators design and manipulate clon-
ing templates (“programming”). Existent tools are not meant 
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to deal with a significant number of pixels typical in common 
image processing applications [5]. The simulator presented 
here not only satisfies this need, but it also can be used for 
testing CNN hardware implementations. El-Sayed Wahed 
and O.H. Abdel wahed[8] introduced an efficient numerical 
integration algorithm for Single-Layer Raster Cellular Neu-
ral Networks Simulator. In this paper, we consider the same 
problem but by using RK4 and neural networks.

2 Behavioral Simulation
Recall that equation (1) is space invariant, which means that 
A(i,j;k,l) = A(i-k,j-1) and B(i,j;k,l) = B(i,k;j,l) for all i,j,k,l.

Therefore, the solution of the system of difference equations 
can be seen as a convolution process between the image 
and the CNN processors. The basic approach is to imagine 
a square subimage area centered at (x,y), with the subimage 
being the same size of the templates involved in the simula-
tion. The center of this subimage is then moved from pixel to 
pixel starting, say, at the top left comer and applying the A 
and B templates at each location (x,y) to solve the differential 
equation. This procedure is repeated for each time step, for 
all the pixels. An instance of this image scanning-processing 
is referred to as an “iteration”. The processing stops when 
it is found that the states of all CNN processors have con-
verged to steady-state values [2] and the outputs of its neigh-
bor cells are saturated, e.g. they have a +1 value. 

This whole simulating approach is referred to as raster simu-
lation. A simplified algorithm is presented below for this 
approach. The part where the integration is involved (i.e. 
calculation of the next state) is explained in the Numerical 
Integration Methods section.

In the following two subsections we will discuss simulated 
annealing algorithm and the mathematical modeling used in 
simulated annealing and our proposed simulator.

2.1 The Simulated Annealing Algorithm 
In the early 1980s Kirkpatrick et al. (1983) and independently 
Cemy (1985) introduced the concepts of annealing in combi-
natorial optimization. Originally these concepts were heavily 
inspired by an analogy between the physical annealing pro-
cess of solids and the problem of solving large combinatorial 
optimization problems. Since this analogy is quite appealing 
we use it here as a background for introducing simulated an-
nealing. In condensed matter physics, annealing is known as 
a thermal process for obtaining low energy states of a solid in 
a heat bath. The process consists of the following two steps:

• increase the temperature of the heat bath to a maximum 
value at which the solid melts;

• decrease carefully the temperature of the heat bath until 
the particles arrange themselves in the ground state of 
the solid. 

In the liquid phase, all particles arrange themselves random-
ly, whereas in the ground state of the solid, the particles are 
arranged in a highly structured lattice, for which the corre-
sponding energy is minimal. The ground state of the solid 
is obtained only if the maximum value of the temperature 
is sufficiently high and the cooing is performed sufficiently 
slowly. Otherwise, the solid will be frozen into a meta-stable 
state rather than into the true ground state.

Metropolis et al. [7] introduced a simple algorithm for simu-
lating the evolution of a solid in a heat bath to thermal equi-
librium. Their algorithm is based on Monte Carlo techniques 
and generates a sequence of states of the solid in the fol-
lowing way.

Given a current state i of the solid with energy Ei, then a 
subsequent state j is generated by applying a perturbation 
mechanism which transforms the current state into a next 
state by a small distortion, for instance by displacement of 
a particle. The energy of the next state is Ej. If the energy 

difference, Ej— Ei, is less than or equal to zero, the state j 
is accepted as the current state. If the energy difference is 
greater than zero, then the state j is accepted with a prob-
ability given by
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where T denotes the temperature of the heat bath and KB is 
a physical constant called the Boltzmann constant. The ac-
ceptance rule described above is known as the Metropolis 
criterion and the algorithm that goes with it is known as the 
Metropolis algorithm. It is known that, if the lowering of the 
temperature is done sufficiently slowly, the solid can reach 
thermal equilibrium at each temperature. In the Metropohs 
algorithm this is achieved by generating a large number of 
transitions at a given value of the temperature. Thermal equi-
librium is characterized by the Boltzmann distribution, which 
gives the probability of the solid of being in a state with en-
ergy Ei at temperature T, and which is given by
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where X is a random variable denoting the current state of 
the solid and the summation extends over all possible states. 
As we indicate below, the Boltzmann distribution plays an 
essential role in the analysis of the convergence of simulated 
annealing. Returning to simulated annealing, the Metropolis 
algorithm can be used to generate a sequence of solutions 
of a combinatorial optimization problem by assuming the fol-
lowing equivalences between a physical many-particle sys-
tem and a combinatorial optimization problem:

•  solutions in the combinatorial optimization problem are 
equivalent to states of the physical system;

•  the cost of a solution is equivalent to the energy of a 
state.

Furthermore, we introduce a control parameter which plays 
the role of the temperature. Simulated annealing can thus be 
viewed as an iteration of Metropolis algorithms, executed at 
decreasing values of the control parameter.

We can now let go of the physical analogy and formulate 
simulated annealing in terms of a local search algorithm. To 
simplify the presentation, we assume, in the remainder of this 
chapter, that we are dealing with a minimization problem. 
The discussion easily translates to maximization problems. 
For an instance (S, f) of a combinatorial optimization problem 
and a neighborhood function .The meaning of the four func-
tions in the below procedure in fig. 2. is obvious: INITIALIZE 
computes a start solution and initial values of the parameters 
c and L; GENERATE selects a solution from the neighbor-
hood of the current solution; CALCULATE.LENGTH and CAL-
CULATE_CONTROL compute new values for the parameters 
L and c, respectively.

As already mentioned, a typical feature of simulated anneal-
ing is that, besides accepting improvements in cost, it also 
accepts deteriorations to a limited extent. Initially, at large 
values of c, large deteriorations will be accepted; as c de-
creases, only smaller deteriorations will be accepted and, 
finally, as the value of c approaches 0, no deteriorations will 
be accepted at all.

The below is the algorithm of simulated annealing:

procedure SIMULATED ANNEALING;

begin

INITIALIZE (istart, Co, Lo)

k:=0;
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repeat

for i := 1 to Lk do

begin

GENERATE (j from Si);

i f f(j) ≤  f(i) then i := j

else

 random[0, 1) then i := j

end;

k:= k + 1;

CALCULATE_LENGTH (Lk);

CALCULATE_CONTROL(ck);

until stop criterion

end;

2.2 The Mathematical Model and the proposed simulator
Simulated annealing can be mathematically modeled by 
means of Markov chains. In this model, we view simulated an-
nealing as a process in which a sequence of Markov chains is 
generated, one for each value of the control parameter. Each 
chain consists of a sequence of trials, where the outcomes of 
the trials correspond to solutions of the problem instance.

Let {S, f) be a problem instance, N a neighborhood function, 
and X(k) a stochastic variable denoting the outcome of the 
kth trial. Then the transition probability at the kth trial for 
each pair i, j € S of outcomes is defined as

where Gij (ck) denotes the generation probability, i.e. the 
probability of generating a solution j when being at solution 
i, and Gij,/ ( ck ) denotes the acceptance probability, i.e. the 
probability of accepting solution j , once it is generated from 
solution i. The most frequently used choice for these prob-
abilities is the following:

Gij(ck) = 

 (5)

And

Aj(ck) =

 (6)

For fixed values of c, the probabilities do not depend on k, 
in which case the resulting Markov chain is time-independent 
or homogeneous. Using the theory of Markov chains it is 
fairly straightforward to show that, under the condition that 
the neighborhoods are strongly connected—in which case 
the Markov chain is irreducible and periodic—there exist a 
unique stationary distribution of the outcomes. This distribu-
tion is the probability distribution of the solutions after an 

infinite number of trials.

The following is the Time-Multiplexing CNN simulation with 
Simulated Annealing:

Algorithm: (Single-Layer CNN simulation with Simulated An-
nealing)

Obtain the input image, initial conditions and templates from 
user;

/* M,N = # of rows/columns of the image */

/* APPLY SIMULATED ANNEALING */

begin

INITIALIZE (istart, Co, Lo);

k:=0;

repeat

for i := 1 to Lk do

begin

GENERATE (j from Si);

i f f(j) ≤  f(i) then i := j

else

 random[0, 1) then i := j

end;

k:= k + 1;

CALCULATE_LENGTH (Lk);

CALCULATE_CONTROL(ck);

until stopcriterion

end;

/* Use the optimized parameters from the simulated anneal-
ing */

while (converged-cells < total # of cells) (

for (i=l; i<=M; i++)

for (j=l; j<=N; j++) (

if (convergence-flag[i][j])

/* calculation of the next state*/

continue; /* current cell already converged */

/* convergence criteria */

{
convergence-flag[i][j] = 1;

converged-cells++ ;
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}

} /* end for */

/* update the state values of the whole image*/

for (i=l; i<=M; i++)

for (j=l; j<=N; j++) (

if (convergence-flag[i] [j]) continue;

Xij(tn+1) = Xij(tn);

}

#_of_iteration++;

) /* end while */

The raster approach implies that each pixel is mapped onto 

a CNN processor. That is, we have an image processing func-
tion in the spatial domain that can be expressed as:

g(x,y) = T(f(x,y))   (7)

where f(.) is the input image, g(.) the processed image, and T 
is an operator on f(.) defined over the neighborhood of (x,y). 

3 Numerical Integration Methods
M. El-Sayed Wahed and O.H. Abdel wahed [8 ] introduced 
An efficient numerical integration algorithm for Single-Layer 
Raster Cellular Neural Networks Simulator. We consider the 
same problem but by using three of the single-step numeri-
cal integration algorithms used in the CNN behavioral simu-
lator described here. They are the RK4 , k11, and k12 used in 
our network solution.

4 Simulation Results and Comparisons 
The simulation time used for comparisons is the actual CPU 
time used. The input image format for this simulator is a 
JPEG. format.

method Mean Square 
Error

Peak Signal 
to Noise 
Ratio

MNormalized 
Cross-Correlation

Average 
Difference

Structural 
Content

Maximum 
Difference

Normalized 
Absolute Error

Runge Kutta 
(RK4) 1.7000e+003 11.8021 0.9449 8.8555 1.1055 240 0.0700

K11 1.6900e+003 10.4000 0.9305 6.4432 1.1010 234 0.0480

K12 1.6700e+003 9.9931 0.9998 6.2236 .90910 232 0.0370
 

Fig.3. Image processing (a) After Averaging Template, (b) Af-
ter Averaging and Edge Detection

Fig. 3 shows results of the raster simulator obtained from a 
complex image of 65,536(256x256) pixels. For this example 
an Averaging template followed by an Edge Detection tem-
plate were applied to the original image to yield the images 
displayed in Figs. 3a and 3b, respectively.

5 Conclusion 
The solution of MRDE can be obtained by neural network ap-
proach. A neuro computing approach can yield a solution of 
MRDE significantly faster than standard solution techniques 
like RK method . As researchers are coming up with more 
and more CNN applications, an efficient and powerful simu-
lator is needed. The simulator hereby presented meets the 
need in five ways: 1) Depending on the accuracy required 
for the simulation, the user can choose from three numerical 
methods to perform the numerical integration, 2) The input 
image format is JPEG, which is commonly available, 3) The 
input image can be of any size, allowing simulation of images 
available in common practices, 4) CPU time of our methods is 
better than those in the literature, 5 ), the quality measures of 
the pictures and the edge detection for our method is better 
than those in the literature.


