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ABSTRACT ‘Lagged variables’ is one of the basic problems in Econometrics. Under Standard assumptions of a general 
linear model, straight forward application of Ordinary Least Squares (OLS) procedure to obtain estimates of 

the parameters of the distributed lag model has two main disadvantages, they are (i) If the number of lags is large and the 
sample size is small, then the parameters may not be estimable; (ii) Since the successive values of the same explanatory 
variables are highly correlated, the problem of multicollinearity creeps in. Therefore, certain weight patterns are suggested 
to reduce the number of lagged variables and to alleviate the severity of multicollinearity (Lankipalle, 1977). Though there 
is good number of weight generating mechanisms in the literature, often Almon’s polynomial type weight pattern is used. 
Some Monte Carlo studies revealed that the OLS is supposed to be better than Almon’s procedure from the point of view 
of bias, and variance. In view of the above, in this paper an attempt has been made for estimation of parameters in Lagged 
variables linear models. A new estimator has been suggested and it is shown that the new estimator has smaller variance 
than Almon’s estimator and provides a remedy for multicollinearity. 

INTRODUCTION
The concept of distributed lag is based on the principle that 
any cause produces a supposed effect after some lag in time. 
Further, this effect is felt, not all at a single point of time, but 
is distributed over a number of pints of time.

In short, distributed lag theory, in many cases, states that a 
dependent variable y, is determined by a weighted sum of 
past values of an independent variables x. Therefore, with-
out less of generality, the distributed lag model may be rep-
resented in the usual notation, as 
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Under Standard assumptions of a general linear model, 
straight forward application of Ordinary Least Squares (OLS) 
procedure to obtain estimates of the parameters of the dis-
tributed lag model has certain disadvantages, primarily be-
cause

(i) If the number of lags is large and the sample size is small, 
then the parameters may not be estimable;

(ii) Since the successive values of the same explanatory vari-
able are highly correlated, the problem of multicollinear-
ity creeps in.

 Therefore, certain weight patterns are suggested to re-
duce the number of lagged variables and to alleviate the 
severity of multicollimearity (Lankipalle, 1977).

 
Though there is good number if weight generating mecha-
nisms in the literature, often Almon’s polynomial type weight 
pattern is used. The practical preference to Almon’s scheme 
is that it is very flexible and easy to estimate. Since Almon’s 
technique is based on the mathematical theorem that any 
function can be approximated by a polynomial of an ap-
propriate degree, the weight pattern defined by Almon has 
some theoretical basis. However, estimators of parameters 
obtained by Almon lag technique have certain serious draw-
backs. Therefore, in this article a new estimator is proposed 
which has lesser variance than the Almon’s estimator.

In the next section, Almon’s procedure to estimate the pa-
rameters of the model (1) is described briefly and different 
drawbacks of the method are clearly pointed out. In the last 
section a new estimator with Almon’s weight pattern is pro-
posed.

Almon’s Procedure
Almon(1965), proposed interpolation distribution for weights 
ie. W (i) are the values at x=0,1,…, S of a polynomial W(x) 
of degree r ( r < s). Its estimation is based on the fact that 
once ( r+1) points on the curve are known, all the W(i) can be 
calculated as a linear combination of these known values by, 
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W(i) =  f ( ) ji α∑     (2)

where fj(i) are the values at x = i of the Lagrange interpolation 
polynomial . Therefore,
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Again, by writing,
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According to Almon, jα  is estimated by OLS and hence an 
estimator of βi.

Almon procedure assumes lag length (s) and degree of the 
polynomial (r). However, correct specification of (r) and (s) is a 
big problem in practice. With the help of data if one chooses 
that combination of (r) and (s) which minimizes residual vari-
ance, then, Frost (1975) has shown that the estimated lagged 
weights are biased. Further, in the process of selection, mis-
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specification of (r) and (s) is possible. For further discussion, 
(Terasirta,1976).

Monte Carlo evidence, reported by Cargill and Meyer (1974), 
is also not in favour of Almon technique. In fact, the perfor-
mance of OLS is supposed to be better than Almon proce-
dure from the point of view of bias, and variance.

To take the discussion more precise, we rewrite (5) as

yn.1 = zn.r+1α r+1.1 + ∈ n-1     (6)

where,

Zn.r+1 = Xn.s+1 AS+1. r+1   (7)
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and   
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   (9)

The OLE of α  is 
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Therefore Almon’s Estimator is  
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Thus under standard assumptions of linear model and correct 
specification of (r) and (s), Almon’s estimator is unbiased, but 
biased when the specifications are not correct or when they 
are selected by ‘trial and error’ method. Since Almon’s esti-
mator is theoretically interpreted as restricted least squares 
estimator, its variance is less than the variance of OLE of β
. But, since each Zi is a linear combination of all the xt-i’s, 
whether there are linear dependencies among xt-i’s or not, 
Zj’s are linearly dependent unless A is an orthogonal matrix, 
which is not. In fact, the degree of dependency of the trans-
formed variables Zj may be more than the dependency of 
the original explanatory variables xt-i and hence estimator’s 
obtained by Almon’s procedure exhibits ‘large biases’ and 
‘inflatory variances’. Therefore, Almon’s procedure does not 
‘break’ the problem of multicollinearity and is not a remedial 
measure of multicollinearity. The only advantage of Almon’s 
procedure is since r < s, in the analysis of data, one uses less 
number of explanatory variables in the process of estimation.

New Estimator
In the general context of linear models, for the problem of 
multicollinearity, one recent remedial measure suggested 
by Hoerl and Kennard (1970a, 1970b) and often discussed, 
is the Ridge Estimator. However, direct application of Ridge 
Estimator may not be of much use in the case of distributed 
lags, since no weight pattern is taken into account.

Now, we propose a new estimator, which takes into account 
both weight pattern and multicollinearity. Consider Almon’s 
weight pattern, for a pre-specified polynomial of degree (r) 
and lag length (s). Then from (7) we have

' ' 'Z Z A X XA T= =      (14)

Since, T is a symmetric positive definite matrix of order (r+1), 
there exists a matrix P such that

P’ T P = Λ (diagonal),

whose elements are Eigen roots, say, 0 1.....λ λ>
.... ......m rλ λ> >
Let P0, P1, ….., Pm,…..,Pr, be the orthogonal latent vectors 
corresponding to the latent roots. It is believed that multicol-
linearity is not one of choice but degree. Small latent roots 
and latent vectors indicate multicollinearities.

Now it can be shown that OLE of α  is
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Since small latent roots indicate multicollinearities, so delete 
the terms 1,......,m rλ λ+  , and define
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Here we impose the restriction that 1 .... 0m rλ λ+ = = =  
and the corresponding  ortho-normal vectors to be 
null vectors. 
 Let

    α
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     (17)

 is essentially a principal component estimator.
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and the remaining Pj’s are null vectors. 

It is clear that α is biased; but from (16) and (18)
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If we use α
∧

 to obtain an estimator ofα , we have a new 
estimator as 

b= A α       (20)

The variance of the new estimator is

( )V b A V=  (α) A’     (21)

We note that the variance of new estimator is less than the 
variance of Almon’s estimator. Even if the rank of T is m, (m < 
r), α can be had and hence the new estimator. Thus the new 
estimator, though biased, provides a remedy for multicollin-
earity and possesses smaller variance.

If (r) and (s) are selected by trial and error method, the com-
bination of (r) and (s) for which the residual variance is mini-
mum, then Almon’s estimator is also biased. Even in this situ-
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ation the new estimator has smaller variance than Almon’s 
estimator and both the estimators are biased.

AMOUNT OF BIAS IN THE NEW ESTIMATOR
For the new estimator proposed, bias can be derived.
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Hence the amount of bias in the new estimator is:
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If the bias is not too large, good amount of reduction in the 

variance of new estimator over Almon’s estimator can be 
achieved.

SUMMARY
1. From the above results, the new estimator has smaller 

variance than Almon’s estimator and provides a remedy 
for multicollinearity. 

2. If (r) and (s) are selected by trial and error method, the 
combination of (r) and (s) for which the residual variance 
is minimum, then Almon’s estimator is also biased. Even 
in this situation the new estimator has smaller variance 
than Almon’s estimator and both the estimators are bi-
ased.

3. Instead of principal component estimator ofα , if the 
ridge estimator is used, this also serves as a solution to 
the multicollinearity problem. But ridge estimator has its 
own limitations and difficulties from practical application 
point of view. 

4. Finally, in distributed lag models, with different weight 
patterns the new estimators can be defined in a similar 
way, where multicollinearity is to be resolved.
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