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ABSTRACT In general, most of the measurements employed in economic analysis contain sizeable errors of measure-
ment. Any realistic model must take this fact in to consideration. In the presence of measuremental errors, 

the OLS Method of estimation of parameters of the general linear model breaks down. Maximum Likelihood (M.L) method 
assumes error variances to be known. Even if it is taken that the error variances are known, the variance covariance matrix 
of true variables thus obtained using covariance matrix of error variables, need not necessarily be positive definite.  This 
paper discusses how to get the M.L estimator of covariance matrix of true variables which is positive definite matrix and 
hence obtain the modified M.L estimator of the parameter vector. It is also found that the modified M.L Estimator is better 
than the OLE from the point of view of bias and Mean Square Error (MSE).

Economics

INTRODUCTION
Let there be a general model with stochastic repressors

∈+= βXY 		  1.1
n.1  n.k  k.1  n.1

when there are errors in variables, then, y, x j (j=1, … k) are 
known as true variables and the observed variables are  

**
jj xy , with additive errors v and z.

vyy +=*

zxx +=*
		  1.2

Under the usual assumptions of errors in variables model, 
there exists an observed model

**** ∈+= βXY 		  1.3

Corresponding to (1.1) [(Refer: Lindley (1947)]

For all practical purposes of estimation and testing one has 
to depend on the observed model, (1.3), since true variables 
are not known.

It is well known that OLS method breakdown in the sense 
that it cannot provide even consistent estimators of param-
eter vector  [Johnston (1963)].

There is voluminous literature on the topic suggesting dif-
ferent methods of estimation of parameters of true model.  
However, there is no satisfactory solution.

Making use of the correspondence between true model (1.1) 
and observed model (1.3) a new estimator is provided, which 
is a linear transform of the OLS, *β , based on the observed 
model.

This new estimator is

**
1 ˆ~

yxx MMb −= 		  1.4

Where, Mx*, Mx, M and Mx*y* are the variance covariance ma-
trices of

jj xx ,* , (xj, zj) and ( ** , yx j ) respectively, whose sample 
estimators are given by
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and the asymptotic variance covariance matrix of b is ob-
tained as 

1
*

12 −−
xxx MMMσ 		  1.6

[Refer: V. B. Naidu et all 1992].

However, the same estimator can also be obtained without 
making use of the correspondence between true model and 
observed model.  But there is some definite advantage in as-
suming the correspondence between the models.

It is clear from the discussion, that *
ˆ

xM  and **
ˆ

yxM  
alone can be computed in practice, directly and they 
are M.L. estimators.  If M is known, b is nothing but  
M.L. estimator of  provided Mx is positive matrix [Refer, 
Judge, C.J. et al. (1980)].

However, since, MMMzxx xxjjj +=+= *
* ,  and hence MMM xx −= *

~~  
and it is an unbiased estimator of Mx. But it is not certain that 
Mx thus obtained is positive definite and much less whether it 
is M.L. estimator of Mx.  More often, in economic situations, 
M has to be choosen from extraneous information in which 
case it is not admissible in general as a covariance matrix.  
And hence, b, can no longer be M.L. estimator.  Now the 
question is can we have M.L. estimator of Mx, which is posi-
tive definite? In this article an attempt is made to answer this 
question.

There are certain procedures developed to provide general 
method of analysis of covariance structures. In cases analyti-
cal solutions are not possible to get maximum likelihood esti-
mators of covariance matrix numerical maximization of likeli-
hood functions are proposed to provide maximum likelihood 
estimators of covariance matrix, under multivariate normality 
assumption of explanatory variables, along with imposed 
conditions on the nature of parameter matrix [Ref: Bock, R.D. 
and Bergman, R.D. (1966), Fletcher, R and Powell, N.J.D. 
(1963), Wiley D.W. et al., (1975)].
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The basic problem is, it is given that, Mx* = Mx + M, where 
Mx*, Mx are positive definite and M is symmetric matrix and 
further M.L. estimator of Mx* is *

ˆ
xM .  Using this information, 

if M is known, can we arrive at M.L. estimator of Mx, which is 
positive definite?

RESULT
There exists a matrix P such that P1

 Mx P = D2, a diagonal 
matrix with positive elements.

Proof:  We have MMM xx += ~ˆ
*  (M known)

It is given that *
ˆ

xM  is positive definite and M is symmetric.  
Then there is a standard matrix algebra result, which says 
that, there exists a matrix P such that P1 *

ˆ
xM  P = I, and 

P1 M P = D1 (diagonal matrix) with D1i > 0.

where D2 is a diagonal matrix. If D2 is to be positive definite, 
D2 must be a diagonal matrix with positive elements i.e.

D2i = (I – D1i) > 0			   1.10

which implies that D1i < 1, and it is possible to have such D1i.  
Hence the result.

From (1.8)

  i.e., ,)(~
1 QDIQM x −′= 		  1.11

where 	 Q = P-1

From (1.11) we have QDIQM x )(ˆ *
1−′=

     
1.12 

Where )1;( 11
*
1 <<= ii DODdiagD is a positive definite and it is 

M.L. estimator of Mx.

[Ref: Bock R.D. and Vandenberg, S.G. (1968)].

   Thus the modified maximum likelihood estimator of  can 
be obtained by 

1*
1 ])([ˆ −−′= QDIQβ **

ˆ
yxM 	           1.13

In classical M.L. estimation of  vector the variance covari-
ance of the estimator is not given.  However, following the 
correspondence between the true model and observed 
model, we can have from (1.6) the asymptotic variance co-
variance matrix of  as 

Asy 1
*

12)ˆ( −−= xxx MMMv σβ

and an estimator of it is given by

Estimated Asy 1
*

12 ˆˆˆˆ)ˆ( −−= xxx MMMv σβ 	 1.14

MONTE CARLO STUDY
To study the behaviour of the modified approach of M L pro-

cedure in the presence of errors in variables linear model, the 
following experiment is designed

The model considered as 	 Y = 1X1+2X2+3X3+∈ 	
			   1.15

Where       vyy +=* 		

		  jjj zxx += **
,	 j = 1, 2, 3... 

Where y and x j and true variables, y*, *
jx  and observed vari-

ables with errors v and Zj. The efficiency of the modified M 
L estimator in examined for the following case where all the 
variables follow normal distribution.

Xj ~ N (0, 1)

Zj ~ N (0, 0.1),      j = 1, 2, 3 . . . 	 1.16	

and	 V ~ N (0, 0.1)

Further in the above case the following two parameters struc-
tures are considered

(i)	 1 = 0.01, 	 2 = 0.3	 3 = 0.6		  1.17

(ii)	 1 =-0.3, 	 2 = 3.0	 3 = 6.0		  1.18

with the parameter structures (1.17), (1.18) and the obser-
vation generated on Xj (j=1, 2, 3. . .), the observations on 
the dependent variables Y are obtained by using the relation 
(1.15). Errors  Zj and V are introduced into the variables Xj and 
Y according to the relation (1.16).

50 sets of samples of size 10, 20, 30, 50 and 100 considered 
in computing the estimator in each of the two different struc-
tures. 

The modified M L estimator is 1*
1 ])([ˆ −−′= QDIQβ **

ˆ
yxM 	

	                                                             	 1.19

The measure of efficiency of the new estimator to that of OLE 
with errors viz,.

 
( )
( )β
β

= ˆMSE

ˆMSEe
*

     is provided. 

Table-1, represents measure of efficiency of structure-I and 
structure-II

TABLE-1
MEASURE OF EFFICIENCY
Sample size Structure-I Structure-II
10 102 (0.301459) 103 (0.532870)
20 104 (0.837204) 102 (0.247035)
30 105 (0.143926) 106 (0.159920)
50 106 (0.492883) 104 (0.648397)
100 109 (0.275319) 107 (0.394682)

SUMMARY OF THE RESULTS
From the Monte Carlo study the following observations are 
made.

1.	 The bias is the modified M L estimation is less than the 
bias in OLE

2.	 For the two structures the value of e>1, implying that the 
modified M L estimator is more efficient than OLE
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