Statistics

An Inventory Model for Weibull Distributed Deteriorating Items with Inventory Returns and Special Sales

KEYWORDS	Inventory, Stochastic Process, Heuristic, Deterioration, Newton Raphson Method.					
Mr. Surya Prak	sh B	Dr. Sridhar A	Mr. Pavankumar. S			
Department of Statistics, Krishnaveni Degree & PG College, Narasarao Peta, Guntur, A.P, India		Basic Sciences & Humanities Department, Vignan's Institute of Engineering for Women, Kapujaggaraju Peta, Visakhapatnam, A.P., India	Basic Sciences & Humanities Department, SBIT Engineering College, Behind Mamatha General Hospital, Khammam, A.P, India			

ABSTRACT In this paper we reconsider the order level Inventory model with inventory returns and special sales discussed by several Authors. Here the items deteriorate with time. The main stress is on the discussion that the situation where the optimal stock level of an Inventory system is smaller than the amount on hand. Author has considered this problem in case of EOQ Inventory system. It has extended this model for the case of order level inventory system. However, this model is presented in a novel manner by considering shortages with prescribed scheduling period for deterministic demand. In these two models the assumption is that the order level inventory is less than the on-hand inventory. This type of situation may arise in any wholesale or retail business. The demand of a particular product decreases due to launching of a new product, which is cheaper and or superior, due to the effects of new budget such as price increase or due to any, other market fluctuations. In any such instances the optimum amount to be retained or sold, if any should be determined by minimizing the losses due to various costs involved in the inventory system.

INTRODUCTION

Inventories are an asset to the firm and from a financial stand point, inventories represent capital investment and must, therefore compete with other asset form for the firm's limited capital funds. The objective of inventory is to maximize the profit and minimize the cost of the firm. Most of the organizations particularly in India are tend to attempt to lower inventory using non-analytical approach with lower service levels. Various process changes can be suggested and be modeled to verify their impact on the inventory levels and service levels. It would be apt to consider real world constraints prior to deciding on the appropriate changes. The theory of inventory control took its roots from the Scientific Management Movement during early 1900's. Since World War II the inventory control discipline has developed further, using the tools of Operations Research. Over hundred years, still many are exploring on inventory models, as this subject has become an interesting research area.

ASSUMPTIONS AND NOTATIONS :

The models are developed under the following assumptions

- Demand is deterministic at a constant rate of 'R' units per unit time.
- 2. Scheduling period is a prescribed constant, T.
- Replenishment size is constant and its rate is infinite. The fixed lot size 'q_p' rises the inventory level in each scheduling period to the order level 'S'.
- 4. Shortages are allowed and completed backlogged.
- The inventory carrying cost C₁ per unit time, the shortage cost C₂ unit per unit time, the cost of each deteriorated unit C₃² and the returning or selling cost C₄ per unit are known and constant during the period under consideration.
- The system starts with an amount of 'Q' units on-hand of which only 'P' units are retained after returning or selling the rest the problem is to determine Optimal value of 'P'.
- 7. The deterioration rate functions for two parameter Weibull Distribution is

$$\theta(t) = \alpha \beta t^{\beta-1}, 0 < \alpha < 1, \beta > 0, t > 0$$

Where b = 1, q(t) becomes a constant which is the case of an exponential decay. When b<1, the rate of deterioration

is decreasing with time and b > 1, is increasing with time't'.

MATHEMATICAL FORMULATION

Consider the period 't' with the initial inventory level of 'Q' units and final inventory is assumed to be zero. This assumption is meaningful since (Q-P) units are sold with special sales price i.e. C_4 . The retained 'P' units are to be exhausted during the time $t_1 < T$, during the remaining period ($T - t_1$) the optimal order level system will be oppresed $N_{11} \otimes Q_{11}(t)$ denotes the inventory position at time t for the the differential equation governing the system for the Weibull distributed deteriorating items is given by

$$\frac{d}{dt}Q(t) + \theta(t)Q(t) = -R; \quad 0 \le t \le t_1$$
(1)

$$\frac{d}{dt}Q(t) = -R \qquad ; \quad t_1 \le t \le T \qquad (2)$$

where $\theta(t) = \alpha \beta t^{\beta-1}$, $0 < \alpha < 1$, $\beta > 0, t > 0$.

The boundary conditions are $Q_1(0) = P$ and $Q_1(t_1) = 0$...(3)

when $0 < \alpha < 1$, we ignore the terms of $O(\alpha^2)$ and use the conditions (3), then the solutions of the above equations are $Q(t) = \{-Rt - \frac{R\alpha}{\beta+1}t^{\beta+1}\}(1+\alpha t^{\beta})^{-1} + P(1-\alpha t^{\beta})^{-1}; \ 0 \le t \le t_1 \cdots (4)$

And
$$Q(t) = -R(t-t_1)$$
; $t_1 \le t \le T$...(5)&

Since $Q(t_1) = 0$ at $t = t_1$ we get $P = Rt_1 + \frac{R\alpha}{\beta + 1} + \frac{R\alpha}{\beta + 1}$...(6)

From (2.4) and (2.6) the total inventory carried during the period 't,' is

$$Q(t_1) = \int_{0}^{t_1} Q(t) dt - \frac{Rt_1^2}{2} + \frac{R\alpha\beta}{(\beta+1)(\beta+2)} t_1^{\beta+2} \qquad (7)$$

The total cost of the system during the period 'T' is given by

$$K(P) = C_4(Q-P) + C_1Q(t_1) + C_1Q(t_1) + (T-t_1)C(t_1) \quad \dots (8)$$

where $C(t_1)$ is the average total cost per unit of optimum or-

der level operating system during

$(T - t_1)$ and is given by

$$C(t_1) = \frac{C_3 R \alpha}{T(\beta+1)} t_1^{\beta+1} + \frac{C_1}{T} [\frac{R t_1^2}{2} + \frac{R \alpha \beta}{(\beta+1)(\beta+2)} t_1^{\beta+2}] + \frac{C_2}{T} \frac{R(T-t_1)^2}{2} \dots (9)$$

The t_1^* of t_1 can be obtained by differentiating the above equation with respect to t_1 and equating to zero. However one should ensure that the second derivative must be greater than zero to get optimum value of t_1^* of t_1 i.e. t_1^* is the solution of the following equation.

$$C_3 \alpha t_1^{\beta-1} + C_1 (1 + \frac{\alpha \beta t_1^{\beta+1}}{\beta+1}) - C_2 (T - t_1) = 0$$
(10)

Proceeding in similar fashion of equation (6), we get the optimum order level S^0 of S as

$$S^{0} = R_{1}t_{1}^{*} + \frac{R\alpha}{\beta + 1}t_{1}^{*\beta + 1} \qquad \dots (11)$$

again the total amount of back order at the end of the cycle is R(T – t₁). Therefore the optimum value of q_p^* of q_p is given by $q_p^* = S^0 + R (T - t_1^*)$

$$q_{p}^{*} = \frac{R\alpha}{\beta + 1} t_{1}^{\beta+1} + RT \qquad (12)$$

and the minimum value of the average total cost $C(t_1)$ is $C(t_1^*)$.

RESULTS IN THE ABSENCE OF DETERIORATIONS

If the deterioration of the item is switched off (a = 0), the equation (10) for the optimum value of t1 reduces to linear equation. $C_1t_1 - C_2T + C_2t_1 = 0 \implies t_1 = \frac{C_1T}{C_1 + C_2}$

and corresponding value of t1 = t1* $t_1^* = \frac{C_2 T}{C_1 + C_2}$... (13)

Moreover the expressions for S⁰ of q^{*} obtained by puta = 0 in the equation (11) & (12) S⁰ = Rt1^{*} (14) & qp^{*}=RT . . . (15)

which agrees with Naddor . Using the equation (6), (7),(9) in (8) we get

$$K(P) = C_{4}[Q - (Rt_{1} + \frac{R\alpha}{\beta+1}t_{1}^{\beta+1})] + C_{1}[\frac{Rt_{1}^{2}}{2} + \frac{R\alpha\beta}{(\beta+1)(\beta+2)}t_{1}^{\beta+2}] + (T - t_{1})C(S)$$
(16)

Since the above equation is a function of t_1 , it is denoted as $K(p,t_1)$ again P is a function of t_1 as in (6), the necessary condition for the minimization of the cost $K(t_1) \frac{d}{dr} K(p) = 0$ is After little simplification, the condition can be written as

$$C_1(\alpha\beta t_1^{\beta+1} + (\beta+1)t_1) - C_4(1-\alpha t_1^{\beta})(\beta+1) - C(S)R(\beta+1) = 0$$
...(17)

The solution of the above equation gives the optimal value of t_1 say t_1^* . The above equation in t_1 can be solved by using Newton Rapshson method or any other search method Substituting t_1^* in (6) we get the optimum value of P^0 of P, the sufficient condition of minimum total cost is $\frac{d^2}{d^2} K(t_0)$ at $t_1 = t_1^* = -C_4 \alpha \beta t_1^{*,0-1} + C_1 \alpha \beta t_1^{*,0} > 0$ should be satisfied.

Note that the maximum Quantity that can be returned or sold if ever is Q i.e. the optimum value of P must be less than or equal to Q. However P depends on t_1 and therefore the optimum solution of the present inventory system should be represented as follows.

$$P^{0} = R_{1}^{*} + \frac{R\alpha}{\beta + 1} t_{1}^{*\beta + 1} ; \text{ if } {}^{0 \le C_{4} < \frac{C_{1}(1 + \alpha\beta_{1}^{*\beta})}{\alpha\beta_{1}^{*\beta + 1}}} = \text{O; otherwise (18)}$$

The above equation (18) gives the optimal value of P i.e. the optimal Quantity to be retained.

NUMERICAL ILLUSTRATIONS:

Let the hypothetical values of parameters of the inventory models be $C_1=3$, $C_2=15$, $C_3=5$, $C_4=4$ R = 100, T=1. All the parameters are expressed in consistent units per month. For different values of 'a' and 'b', we have determined the optimal Quantity to be retained and the associated costs are por-

trayed in the following table. To do this, at first we solved the (17) by using Newton Raphson method and t1* is substituted in equations (18),(16) to get optimum quantity to retained and associated minimum cost respectively.

Sensi	tivity	of the	Mode	el with	respect	to Dete	erioratic	on rates	i.e. 'a' ar	nd 'b'.
lues	မ္မ မြှ-values									
α- va	1	2	3	4	5	6	7	8	9	10
0.01	113	116	118	118	118	118	118	117	116	115
	173	174	175	175	176	176	175	175	175	175
	97	145	245	449	831	1492	2534	4043	6133	8878
0.02	121	127	131	132	132	132	131	129	127	126
	178	180	182	183	183	183	183	183	183	184
	117	225	454	916	1737	3038	4913	7445	10781	15072
	130	138	143	146	146	145	143	141	139	136
0.03	184	187	189	190	190	190	190	190	191	193
	139	318	706	1465	2744	4644	7248	10662	15086	20756
0.04	138	149	156	159	159	158	156	153	150	146
	189	193	196	197	197	197	197	198	199	202
	165	427	997	2079	3812	6273	9549	13780	19227	26210
0.05	146	160	168	171	172	171	168	164	160	156
	194	199	202	204	204	204	204	205	208	211
	194	550	1323	2742	4916	7908	11819	16833	23267	31527
0.06	154	170	180	184	185	183	180	176	171	166
	200	205	209	210	210	211	211	213	216	221
	225	688	1681	3439	6042	9541	14063	19836	27236	36751
	162	181	191	196	197	195	192	187	181	175
0.07	205	212	216	217	217	217	218	220	224	230
	260	838	2064	4162	7177	11166	16282	22798	31149	41904
0.08	169	191	202	208	209	207	203	198	191	185
	211	218	222	223	223	224	225	228	232	239
	298	1002	2469	4902	8317	12780	18478	25725	35016	47001
	177	200	213	219	220	218	214	208	201	194
0.09	216	224	228	230	230	230	232	235	240	248
	339	1178	2891	5653	9456	14382	20651	28621	38842	52050
	184	210	224	231	232	230	225	219	211	203
0.1	222	230	235	236	236	237	239	243	248	257
	383	1364	3328	6411	10592	15972	22804	31632	42634	57057

The first row values are corresponding 'a' are obtained using equation (9) i.e. the optimal cost during the period $(t - t_1)$ and the second row values for corresponding 'a' are the optimum quantities to be retained i.e.P⁰ of P using equation (6). The third row values for corresponding 'a' are obtained from equation (16).

From the above table we observe that as 'a' increases optimum quantity to be retained will increase and there is a marginal change in the cost even though 'P' increases. Whereas in case of 'b' the associated cost will increase drastically. This can be noted from the third row values of the table 1 When a

RESEARCH PAPER

= 0.01. Similar observation can be made for different values of 'b' and 'a'. Hence the model is very sensitive for changes in 'b' rather than changes in the 'a' values. However, it would be interesting to check this sensitivity of the model with respect to the changes in the special sales i.e. C4. To do so, the pertinent computations are summarized in table 2.

SENS	THE	ΓΥ ΟF ΄α΄ ΑΝ	THE I	, MODE	L WIT	H RES	PECT	TO CH	IANG-	
nes	C ₄ -values									
α-val	0.2	0.24	0.28	0.32	0.36	0.4	0.44	0.48	0.52	
0.01	44	46	47	48	50	51	52	54	55	
	284	322	360	398	436	474	512	573	607	
0.02	47	49	50	51	53	54	55	57	58	
	289	327	365	403	441	479	517	578	612	
0.03	50	51	53	54	56	57	58	60	61	
	294	332	370	408	446	484	522	582	616	
0.04	53	54	56	57	58	60	61	62	64	
	299	337	375	413	451	489	526	586	621	
0.05	56	57	58	60	61	62	64	65	67	
	304	342	380	418	455	493	531	590	625	
0.06	58	60	61	62	64	65	67	68	69	
0.06	308	346	384	422	460	498	536	595	630	
0.07	61	62	64	65	66	68	69	71	72	
	313	351	389	427	465	503	540	599	634	
0.08	63	65	66	68	69	71	72	73	75	
	318	356	394	432	469	507	545	603	639	
0.00	64	67	69	70	72	73	75	76	77	
0.09	322	361	399	436	474	512	550	608	644	
0.1	69	70	71	73	74	76	77	79	80	
	328	365	403	441	479	517	555	566	649	

From the above table we note that as C_4 values increase there is a marginal change in the values of 'P' and K (P) i.e. the optimum quantity to be retained and the associated costs.

CONCLUSIONS:

In this chapter we have considered that the inventory is depleted not only by demand but also by Weibull distribution deterioration. Moreover we find that the feasibility condition for working of this model is proposed in equation 18. Also the above sensitivity tables show that the influence of the parameter 'b' is more significant than the changes in the other parameter like 'a' and C₄ values. It would be interesting to deal with this model in the context of finite Horizon Model. It also very interesting to deal with this situation in probabilistic demand. However, one cannot expect a closed form solution for the optimum quantity to be retained. In such situation one can use any search method like Genetic Algorithm.

REFERENCE

1. AGGARWAL.S.P (1978), "A NOTE ON AN ORDER LEVEL INVENTORY MODEL FOR A SYSTEM WITH A CONSTANT RATE OF REPERENCE: 1. AGGARWALS, 1776, A NOTE ON AN ONE LEVEL INVENTION MODEL FOR A STSTEM WITH A CONSTANT RATE OF DETERIORATION", OFSEARCHTS (4), 184-187. | 2. BROWN.R.G (1967), "DECISION RULES FOR INVENTORY MANAGEMENT" HALF RAINEHART AND WINSTON, NEWYORK,] 3. BHUNIA AND MAITI.M (1997), "A DETERMINISTIC INVENTORY REPLENISHMENT PROBLEM FOR DETERIORATING ITEMS WITH TIME DEPENDENT AND SHORTAGES FOR THE FINITE TIME HORIZON", OPSEARCH, 34, 51-61. | 4. CHANG.H.J AND DYE.C.Y (1999), "AN EOQ MODEL FOR DETERIORATING ITEMS WITH TIME VARYING DEMAND AND PARTIAL BACKLOGGING", JOURNAL OF OPERATIONS RESEARCH 50,176-1182,] 5. COVERT.R.P AND PHILIPS.G.C (1973), "AN EOQ MODEL FOR DETERIORATION DETERIORATION", AILE, TRANS., 323-326. 6. DAS.K ETAL., (2003), "MULTI OBJECTIVE FUZZY INVENTORY MODEL FOR DETERIORATING ITEMS WITH SHORTAGES OVER A FINITE TIME HORIZON" 16. DAS.K ETAL, (2003), "MOLTI OBJECTIVE FOZZY INVENTIORY MODEL FOR DETENDORTING THEMS WITH SHORRAGES OVER A FINITE TIME HORIZON", OPSEARCH, VOL40.N0.4, 252-277.] 7. DATTA.TX AND PAL.AK (1988), "ORDER LEVEL INVENTORY SYSTEM WITH POWER DEMAND PATERN FOR ITEMS WITH VARIABLE RATE OF DETERIORATION", IND.J.PURE AND APPL. MATH., 19(11), 1043-1053.] 8. DAVE.U (1986), "INVENTORY RETURNS AND SPECIAL SALES IN AN ORDER LEVEL SYSTEM", OPTIMIZATION, 17, 819-825.] 9. DAVE.U AND PATEL (1981), "POLICY INVENTORY MODE FOR DETERIORATING ITEMS WITH TIME PROPORTIONAL DEMAND", JOURNAL OF OPERATIONAL RESEARCH SOCIETY, 32, 137-142.] 10. DIXIT.V AND SHAH.N.H (2006), "AN ORDER LEVEL INVENTORY MODEL WITH DECREASING DEMAND AND TIME", INTTER NATIONAL JOURNAL FOR MANAGEMENT & SCIENCE, 22(1), 7-78.] 11. GHARE.PM AND SCHRADER.G.F (1963), "A MODEL FOR EXPONENTIALLY DECAYINGINVENTORIES", A.W.SHAW CO., CHICAGO, 18-52.] 12. GOSWAMI AND CHOUDHURI.K.S (1991), "AN EOQ MODEL FOR DETERRATING ITEMS WITH SHORTAGES AND LINEAR TREND DEMAND", JOURNAL OF OPERATIONS RESEARCH SOCIETY, 42, 105.1110, 113. SUIVER A. DETERRATING INC. IN INVENTORIES", AND LINEAR TREND DEMAND", JOURNAL OF OPERATIONS RESEARCH SOCIETY, 42, 105.1110, 113. SUIVER A DETERRATING INC. IN INVENTORIES AND LINEAR TREND DEMAND", JOURNAL OF OPERATIONS RESEARCH SOCIETY, 42, 105.1110, 113. SUIVER A DESEARCH IND INVENTORIES AND LINEAR TREND DEMAND", JOURNAL OF OPERATIONS RESEARCH SOCIETY, 42, 105.1110, 113. SUIVER A DESEARCH IND INVENTORIES AND LINEAR TREND DEMAND", JOURNAL OF OPERATIONS RESEARCH SOCIETY, 42, 105.1110, 113. SUIVER A DESEARCH IND INVENTORIES AND LINEAR TREND DEMAND", JOURNAL OF OPERATIONS RESEARCH SOCIETY, 42, 105.1110, 113. SUIVER AND DESEARCH IND INVENTORY MANAGEMENT A PERVENCIAND DE FOR DETERIORITING ITEMS WITH SHORTAGES AND LINEAR TREND DEMAND", JOURNAL OF OPERATIONS RESEARCH SOCIETY, 42, 105.1110, 113. SUIVER AND DESEARCH IND INVENTORY MANAGEMENT A DEVICENCIAND DETERIORATIONS RESEARCH SOCIETY, 42, 105.1110, 113. SUIVER AND DESEARCH INDIVIDUAL AND RESEARCH INDIVENTORY MA 1105-1110. | 13. SILVER.E.A, "OPERATIONS RESEARCH IN INVENTORY MANAGEMENT A REVIEW AND CITIES", OPERATIONAL RESEARCH VOL.29(4), 628-645