
298 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR Information Technology

Assessment of Versioning Paradigms with respect to
Software Configuration Management

Kirti Mathur Amber Jain
International Institute of Professional Studies

D. A. University, Indore
International Institute of Professional Studies

D. A. University, Indore

Keywords Versioning, configuration, management.

ABSTRACT Software still remains a major challenge since 50 years for theoretical and practical work in Software Configu-
ration Management (SCM), tracking and controlling changes. This paper provides an overview with classifica-

tion of different versioning models and paradigms by defining fundamental concepts such as revisions, variants, configura-
tions, and changes. It assesses various versioning schemas used in different companies as commercial and open source
systems. As a result of this survey, this paper then proposes Github's Semantic Versioning as the most consistent and logical
to control versioning.

II. Introduction
Software configuration management is the discipline of
tracking and controlling changes in large and complex soft-
ware systems. SCM practices include revision control and the
establishment of baselines. If something goes wrong, SCM
can determine what was changed and who changed it. The
importance of SCM has been widely recognized, as reflected
in particular in the Capability Maturity Model (CMM) [1] de-
veloped by the Software Engineering Institute (SEI) [9]. SCM
is seen as one of the key elements for CMM. Furthermore,
SCM plays an important role in achieving ISO 9000 conform-
ance. SCM can serve both as:

· Management support discipline : SCM is concerned with
controlling changes to software products such as identifi-
cation of product components and their versions, change
control, status accounting, and audit and review

· Development support discipline : SCM provides func-
tions that assist developers in performing coordinated
changes to software products. SCM is in charge of ac-
curately recording the composition of versioned soft-
ware products evolving into many revisions and variants,
maintaining consistency between interdependent com-
ponents, building compiled code and executables from
source, and constructing new configurations based on
project descriptions.

In this paper, we will consider SCM as a development sup-
port discipline.

III. LITERATURE REVIEW
In software engineering, software configuration management
(SCM) is the task of tracking and controlling changes in the
software, part of the larger cross-discipline field of configura-
tion management [8]. The major goals of SCM are:

· Version and Configuration control
· Configuration identification
· Build management
· Configuration status accounting
· Defect tracking
· Environment management
· Process management
· Configuration auditing
· Team interactions and teamwork

This paper primarily focuses on overview and classification of
different versioning paradigms and proposes SemVer as the
consistent and logical versioning scheme.

Figure-1: Taxonomy of software versioning [3]

A version model defines the objects to be versioned, ver-
sion identification and organization, as well as operations for
retrieving existing versions and constructing new versions.
Software objects and their relationships constitute the prod-
uct space, their versions are organized in the version space. A
versioned object base combines product and version space
[16].

Many SCM systems use version graphs for representing ver-
sion spaces. A version graph consists of nodes and edges
corresponding to (groups of) versions and their relationships,
respectively.

SCM system is illustrated in Figure, where versioned objects,
revisions, and variants are organized into orthogonal dimen-
sions:

Figure-2: Software product versioning [4]

INDIAN JOURNAL OF APPLIED RESEARCH X 299

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR

Several SCM systems are founded on databases and man-
age versions of objects and relationships stored in the data-
base. Graphs are well suited to represent the organization of
a versioned object base, even if the corresponding system
is not graph-based. For example, SCCS and RCS are both
file-based, but the version space of a text file may be repre-
sented naturally as a version graph [10].

To represent versions in the object base, deltas are being
used both at the coarse- grained and the fine-grained levels.
Deltas are mainstay in Version Control Systems and are calcu-
lated using some data differencing algorithms/programs (for
e.g. diff utility [18]). Formally, a data differencing algorithm
[17] takes as input source data and target data, and produces
difference data such that given the source data and the dif-
ference data, one can reconstruct the target data.

These deltas can then be used by Merge tools to combine
versions or changes . Most version control tools (such as Git,
Mercurial, Subversion, CVS, bzr, SCCS etc [14]) implement
deltas and merging to ease the management of versions or
changes. Merge tools may be classified as follows (Figure-3:
Types of merging):

1. Raw merging: This simply applies a change in a different
context. For example in Figure-3, change c2 was origi-
nally performed independently of change c1 and is later
combined with c1 to produce version v4. This is used by
SCCS.

Figure-3(a): Raw merging [3]

2. Two-way merging: This compares two alternative ver-
sions a1 and a2 and merges them into a single version
m. This can only detect differences, and cannot resolve
them automatically.

Figure-3(b): 2-way versioning [3]

3. Three-way merging: This consults a common baseline
b if a difference is detected. If a change has been ap-
plied in only one version, this change is incorporated au-
tomatically. Otherwise, a conflict is detected that can be
resolved either manually or automatically.

Figure-3(c): 3-way merging [3]

IV. Versioning Schemes
Software versioning is the process of assigning either unique
version names or unique version numbers to unique states of
computer software [15]. A consistent and stable versioning
scheme is one of the most important aspects of SCM. Many
version numbering schemes are used to keep track of differ-
ent versions of a piece of software:

Company
Versioning
Scheme

Example

Microsoft

Change significance:
· Emphasize the value of
the upgrade to the software
user.
· Represent a release half-
way between major versions

Internet Ex-
plorer 5.1.1

Microsoft

Designating development
stage:
· Releases that are not
stable enough for general or
practical deployment
· Releases are intended for
testing or internal use only
· Alpha, Beta, Release
Candidate etc.

Windows 7 al-
pha, Windows 8
beta, Windows
Vista Release
Candidate

Adobe

Number of sequences:
· Fourth (usually un-
published) number which
denotes the software build
and/or build date.

Adobe Flash
10.1.53.64

Wikimedia
Incrementing sequences:
· Free software packages
treat numbers as a continu-
ous stream.

MediaWiki
1.10.0, 1.11.0,
1.11.1, 1.11.2

Canonical
Date:
· Uses the year and month
(optionally followed by the
day of the release).

Wine 20040505,
Ubuntu 11.10

Adobe,
Microsoft

Year of release:
· Identify versions by year.

Adobe Illustra-
tor 88, Microsoft
Windows 2000
Server

Adobe,
Macromedia

Alphanumeric codes:
· Easier to read and refer
to by customers.

Macrome-dia
Flash MX,
Adobe Photo-
shop CS2

Apple

NumVersion struct:
· one- or two-digit major
version
· a one-digit minor version
· a one-digit “bug” ver-
sion
· a stage indicator (drawn
from the set development/
prealpha, alpha, beta and
final/release)
· a one-byte pre-release
version
When writing, convention is
to omit any parts after the
minor version whose value
are zero

Mac 1.0.2b12

Sun Mi-
crosystem,
Microsoft

Internal version numbers:
· Usually supplement
external/public version
numbers
· More consistent version
numbering rules

Java 1.5.0
(public version
Java SE 5.0),
NT 5.1 (publicly
Windows XP)

Table-1: Different versioning schemes in use in different
software companies [2][6][3][4]

IV. Need Of Logical And Consistent Versioning
Enterprise software is designed to take advantage of other
software components that are already available (rather than
reinventing the wheel), or have already been designed and
implemented for use elsewhere. Dependency hell [5] (also
known as DLL hell on Windows, Extension Conflict on Mac
OS, JAR hell in Java and RPM hell on Red Hat Linux based
systems), in which installed packages have dependencies
on specific versions of other software packages, is a major

300 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 6 | June 2013 | ISSN - 2249-555XReseaRch PaPeR

REFERENCE [1] Capability Maturity Model. (2013a, April 19). In Wikipedia, the free encyclopedia. Retrieved from http://en.wikipedia.org/w/index.
php?title=Capability_Maturity_Model&oldid=549477725 | [2] Coding Horror: What’s In a Version Number, Anyway? (n.d.). Retrieved May 1,

2013, from http://www.codinghorror.com/blog/2007/02/whats-in-a-version-number-anyway.html | [3] Conradi, R., & Westfechtel, B. (1997). Towards a uniform version
model for software configuration management. In R. Conradi (Ed.), Software Configuration Management (pp. 1–17). Springer Berlin Heidelberg. Retrieved from
http://link.springer.com/chapter/10.1007/3-540-63014-7_1 | [4] Conradi, R., & Westfechtel, B. (1998). Version models for software configuration management. ACM
Comput. Surv., 30(2), 232–282. doi:10.1145/280277.280280 | [5] Dependency hell. (2013, April 22). In Wikipedia, the free encyclopedia. Retrieved from http://
en.wikipedia.org/w/index.php?title=Dependency_hell&oldid=551704064 | [6] Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project (1st ed.). O’Reilly Media. | [7] History of software configuration management. (2013a, March 16). In Wikipedia, the free encyclopedia. Retrieved from
http://en.wikipedia.org/w/index.php?title=History_of_software_configuration_management&oldid=544680084 | [8] Humphrey, W. S. (1989). Managing the software
process. Addison-Wesley. | [9] Paulk, M. C. (1995). The capability maturity model: guidelines for improving the software process. Addison-Wesley Pub. Co. | [10]
Pressman, R. (2009). Software Engineering: A Practitioner’s Approach (7th ed.). McGraw-Hill Science/Engineering/Math. | [11] Schmidt, E. E., & Lampson, B. W. (1985,
December 10). Software version management system. Retrieved from http://www.google.co.in/patents?id=pKgsAAAAEBAJ | [12] Semantic Versioning 2.0.0-rc.1.
(n.d.). Retrieved May 1, 2013, from http://semver.org/ | [13] Sigal, A. D., Bien, D., & Pissarra, A. (1999, March 9). Dynamic versioning system for multiple users of multi-
module software system. Retrieved from http://www.google.co.in/patents?id=3gYXAAAAEBAJ | [14] Sink, E. (2011). Version Control by Example (1st ed.). Pyrenean
Gold Press. | [15] Software versioning. (2013, April 24). In Wikipedia, the free encyclopedia. Retrieved from http://en.wikipedia.org/w/index.php?title=Software_
versioning&oldid=552018364 | [16] Sommerville, I. (2010). Software Engineering (9th ed.). Addison-Wesley.

frustration of software users. The dependency issues arise
around shared packages/libraries on which several other
packages have dependencies but where they depend on
different and incompatible versions of the shared packages.
If the shared package/library can only be installed in a sin-
gle version, the user/administrator may need to address the
problem by obtaining newer/older versions of the depend-
ent packages. This, in turn, may break other dependencies
and push the problem to another set of packages.

As a responsible developer you will, of course, want to ver-
ify that any package upgrades function as advertised. The
most obvious (and easiest, though often ignored) solution
to this problem is to have a strict, standardized, logical and
consistent version numbering system. This is not a novel or
revolutionary idea. In fact, most developers and software
companies do something close to this already (as outlined
in previous section). The problem is that “close” isn’t good
enough. Without compliance to some sort of formal specifi-
cation, version numbers are essentially useless for depend-
ency management. What you can do is let Semantic Ver-
sioning provide you with a sane way to release and upgrade
packages without having to roll new versions of dependent
package saving manpower, time and effort.

V. Semantic Versioning
Many researchers have proposed consistent versioning
schemes [11][13]. Tom Preston Werner proposed a logical,
strict and consistent set of rules and requirements as Seman-
tic Versioning (SemVer) [12] for assigning version numbers.

According to this scheme, version numbers and the way they
change convey meaning about the underlying code and
what has been modified from one version to the next (so that
developers can handle the problem of dependency hell).

In Semantic Versioning, the developer first declares a clear
and precise public API (which either may consist of documen-
tation or be enforced by the code itself). Once the public API
is identified, the developer communicates changes to it with
specific increments to the version number. As an example,
consider a version format of X.Y.Z (X = Major, Y = Minor and Z
= Patch). Bug fixes not affecting the API increment the patch
version (Z), backwards compatible API additions/changes in-
crement the minor version (Y), and backwards incompatible
API changes increment the major version (X). A detailed seci-
fication of Semantic Versioning is available at http://sem-
ver.org/. To be able to use SemVer, developers or company
needs to declare that they are doing so (by linking to SemVer
website/specification from project’s documentation so that
others know the rules and can benefit from them) and then
strictly and consistently follow the SemVer rules.

VI. Conclusion
Even though developers and software companies use differ-
ent versioning schemes, industry needs to agree on a con-
sistent, logical and strict versioning scheme as a solution to
the dependency hell problem. One strong candidate is Sem-
Ver which is clear, consistent and concise and is being used
(with minor variations) by many companies and developers.

