RESEARCH PAPER	Mathematics	Volume : 3 Issue : 3 March 2013 ISSN - 2249-555X
Not of Road Road Road Road Road Road Road Road	Acyclic Coloring of Helm Graph Families	
KEYWORDS	Acyclic coloring, Middle graph, Central graph and Total graph.	
R. Arundhadhi		Dr. K. Thirusangu
Assistant Professor, D.G.Vaishnav College,Chennai. Research Scholar, Bharathiar University, Coimbatore.		Associate Professor, Department of Mathematics, S.I.V.E.T College, Gowriwakkam,Chennai-73.

ABSTRACT An acyclic coloring of a graph G is a proper vertex coloring (no two adjacent vertices of G have the same color) such that the induced subgraph of any two color classes is acyclic. The minimum number of colors needed to acyclically color the vertices of a graph \tilde{G} is called as acyclic chromatic number and is denoted by a(G). In this paper, we give the exact value of the acyclic chromatic number of Middle , Central and Total graph of Helm Graph families.

1. INTRODUCTION

All graphs considered here are finite, simple and undirected. In the whole paper, the term coloring will be used to refer vertex coloring of graphs. A proper coloring of a graph G is a coloring of the vertices of G such that no two neighbors in G are assigned the same color.

1.1 Definition

A subgraph H of a graph G is said to be induced subgraph if it has all the edges that appear in G over the same vertex set. The subgraph induced by the vertex set {v1,v2,v3,...vk} is denoted by <v1,v2,v3,...,vk>.

1.2 Definition

A vertex coloring of a graph is said to be acyclic [9] if the induced subgraph of any two color classes is acyclic. In other words, the subgraph induced by any two color classes is a forest.

1.3 Definition

The minimum number of colors needed to acyclically color the vertices of a graph G is called its acyclic chromatic number and is denoted by a(G).

1.4 Definition

A cycle in a graph G is said to be a bicolored (j,k)-cycle if all its vertices are properly colored with two colors j and k. A graph G is said to be a (j,k)-cycle free graph if it do not have any bicolored (j,k)-cycle.

1.5 Definition

The Helm Hn, is the graph obtained from a Wheel graph Wn, by attaching a pendent edge at each vertex of the n-cycle.

In this paper, we obtain the exact value of the acyclic chromatic number of the Helm graph families.

2. ACYCLIC COLORING OF M(Hn)

Let G be a graph with vertex set V(G) and edge set E(G).

2.1 Definition

The Middle graph [2] ,denoted by M(G), of a graph G is the graph obtained from G by inserting a new vertex into every edge of G and by joining those pairs of these new vertices with edges which lie on adjacent edges of G.

In Helm Hn, let v be the root vertex and v1,v2,v3,....,vn be the vertices of n-cycle. Let w1,w2, w3, ... wn be the n pendent vertices of Hn. Let ek(k=1 to n) be the newly added vertex on the edge joining v and vk and fk (k=1 to n) be the newly added vertex on the edge joining vk and vk+1. Let gk (k=1 to n) be the newly added vertex on the edge joining vk and wk. We use these notations for sections 3 and 4 also.

2.2 Structural properties of M(Hn).

By definition 2.1,M(Hn) has the following structural properties.

- < v,ek; k=1 to n> form a clique of order n+1.
- (ii) For each k=2 to n, the neighbors of vk are {ek,fk,fk-1,gk} and the neighbors of v1 are {e1,f1,fn,g1}.
- (iii) The neighbors of wk is {gk},k=1to n.
- (iv) For each k=2 to n-1, the neighbors of fk are {fk-1,fk+1,ek,ek+1,vk,vk+1,gk,gk+1} and the neighbors of f1 and fn are respectively {fn,f2,e1,e2,v1,v2,g1,g2} and{fn-1,f1,en,e1,vn,v1,gn,g1}.
- (v) For each k=1 to n, ek and gk are adjacent.

We use these structural properties, to find the acyclic chromatic number of M(Hn). Now, we present a coloring algorithm for M(Hn) and we prove that the coloring is acyclic in the immediate following theorem.

2.3 Coloring Algorithm of M(Hn), $n \ge 4$. Input : M(Hn)

V← ,gn,w1,w2,...,wn}

 $E \leftarrow \{ e1', e2', \dots en', eij'(1 \le i < j < n), e1'', e2'', \dots en'', f1', f2', \dots fn', f1'', f2'', \dots fn'', g1', g2', \dots gn', \\$

g1",g2",...,gn", h1',h2',...,hn',h1",h2",...,hn", d1',d2',...dn' , d1",d2",...dn" ,

l1',l2',...,ln',l1",l2",...,ln"}

for k= 1 to n vek← ek'; end for for j= 1 to n-1 for k= 1 to n . if j < k, ejek ← ejk' ; end for end for for k= 1 to n $ekvk \leftarrow ek''$; $ekfk \leftarrow fk'$; $vkgk \leftarrow gk'$; $gkwk \leftarrow gk''$; $ekgk \leftarrow dk''$; end for for k = 1 to n-1

}

}

fkek+1← fk";

INDIAN JOURNAL OF APPLIED RESEARCH # 271

RESEARCH PAPER

```
}
end for
fne1← fn";
for k= 1 to n-1
fk fk+1\leftarrow hk' ; fk gk+1\leftarrow hk" ; fk vk+1\leftarrow lk" ;
}
end for
fnf1 \leftarrow hn'; fng1 \leftarrow hn"; fn v1 \leftarrow ln";
for k= 1 to n
gkfk \leftarrow dk'; vkfk \leftarrow lk';
end for
v←n+1:
for k= 1 to n
ek← k ;
end for
for k= 1 to n
vk \leftarrow n+1; wk \leftarrow n+1;
end for
for k= 1 to n
r← k+2;
if r ≤ n.
fk← r ;
else
fk← r-n ;
}
```

end for for k= 1 to n {

```
s \leftarrow k+3;
```

if $s \leq n$, gk← s ; else ak← s-n ; } end for

2.4 Theorem

The acyclic chromatic number of M(Hn) is

a[M(Hn)]=n+1, n≥4.

Proof:

First, we prove that the coloring of M(Hn) is acyclic. For this, let us assign colors to the vertices of M(Hn), using algorithm2.3.

Case(i)

Consider the colors n+1 and k , k=1 to n. The color class of n+1 is {v,vj ,wj ;j=1 to n} whereas the color class of k is {ek ,fk-2,gk-3}. The induced subgraph of these color classes is a forest as it contain the bicolored disjoint paths v ek vk ,vk-2 fk-2 vk-1 and vk+2gk+2wk+2. Therefore, M(Hn) is (k,(n+1))cycle free.

Case(ii)

Consider the color k and $k+1, 1 \le k \le n-1$. The color class of k is {ek ,fk-2,gk-3}whereas the color class of k+1 is {ek+1,fk-1,gk-2}. The induced subgraph of these color classes is a forest as it contain the bicolored path gk-2 fk-2 fk-1 ek ek+1 and an isolated vertex gk-3. Therefore, M(Hn) is (k,(k+1))- cycle free graph.

Case(iii)

Consider the colors j and k, $1 \le j, k \le n$. The induced subgraph of the color classes of these colors is a forest as it contain the bicolored paths fk-2 ej ek and gk-3fj-2(when| j-k|=2) or the bicolored path of length 3 and isolated vertices (when j-k |

Volume : 3 | Issue : 3 | March 2013 | ISSN - 2249-555X

 \geq 2). Thus, M(Hn) is (j,k)-cycle free graph.

In all the three cases, the induced subgraph of any two color classes is acyclic and hence the coloring is acyclic.

As M(Hn) has a clique of order n+1, we need minimum n+1 colors for proper coloring

(see Fig.1). Therefore, a[M(Hn)]=n+1, $n \ge 4$.

Fig. 1.a[M(H6)] = 7

2.5 Remark (i) a[M(H2)]=5

(ii)a[M(H3)]= 6.

3. ACYCLIC COLORING OF C(Hn)

3.1 Definition

Let G be a graph with vertex set V(G) and edge set E(G). The central graph of G, denoted by C(G)[11], is obtained from G by subdividing each edge exactly once and joining all the non adjacent vertices of G.

3.2 Structural properties of C(Hn)

- (i) $\langle v,wk; k=1 \text{ to } n \rangle$ form a clique of order n+1.
- (ii) {v ,fk ,gk ;k=1 to n} form an independent set.
- (iii) The neighbors of vk,(k= 2 to n-1) is {ek ,fk ,gk} \cup {vj;j=1 to n and $j\neq k-1, k+1$ $\bigcup \{w_j\}_j=1$ to n and $j\neq k$. The neighbors of v1 is $\{e1, f1, g1\} \cup \{v_j\}_j=3$ to $n-1\} \cup \{w_j; j=2$ to $n\}$ and that of vn is $\{en, fn, gn\} \cup \{v_j\}_j=2$ to $n-2\} \cup \{w_j; j=1$ to $n-1\}$
- (iv) The neighbors of ek is {v,vk},k=1 to n.
- (v) The neighbors of gk is {vk,wk},k=1 to n.

We use these structural properties in the coloring algorithm of C(Hn) and we prove that the coloring is acyclic in the immediate following theorem.

3.3 Coloring Algorithm of C(Hn), $n \ge 5$.

Input : C(Hn) V← {v,e1,e2,...,en,v1,v2,...,vn,f1,f2,...,fn,g1,g2,... ,gn,w1,w2,...,wn}; i < j ≤ n, j≠ 'i+1)}; for k = 1 to n v ek← ek' ; ek vk← ek"; v wk← lk'; }

end for for k= 1 to n

RESEARCH PAPER

vk fk \leftarrow fk'; vk gk \leftarrow gk'; gk wk \leftarrow gk"; end for for k= 1 to n-1 . if k < n, fk vk+1 \leftarrow fk" ; end for fn v1 \leftarrow fn" ; for j= 1 to n for k= 1 to n . if j≠k, $vj wk \leftarrow djk;$ end for end for for j= 1 to n for k= 1 to n if i < k, wj wk \leftarrow ljk ; end for end for for k= 3 to n-1 v1 vk \leftarrow h1k; end for for j= 2 to n-2 for k= j+2 to n vj vk ← hjk ; end for end for v← n+1; for k= 1 to n $fk \leftarrow n+1; gk \leftarrow n+1;$ end for for k= 1 to n wk← k : end for for k= 1 to 2 vk← k : end for for k= 3 to n $vk \leftarrow n+k-1$; end for for k= 1 to n m { r← k+1 ; if r ≤ n, ek← r ; else ek← r-n ; } end for

3.4 Theorem The acyclic chromatic number of C(Hn) is Volume : 3 | Issue : 3 | March 2013 | ISSN - 2249-555X

 $a[C(Hn)]=2n\text{-}1,\,n\geq5.$

Proof

We prove the theorem by showing the coloring given in sec 3.3 is acyclic.

As the two neighbors of each fk (k= 1 to n) have different colors, any bicolored cycle cannot contain fk. The same argument is true for gk, $3 \le k \le n$. Similarly, any bicolored cycle cannot contain the path v ek vk (k= 1 to n), since the two neighbors of ek (k=1 to n) have different colors. Since the color class of k (n+2 \le k \le 2n-1) is a single vertex vk-n+1, any bicolored cycle cannot contain the vertices vj ($3 \le j \le n$). So, we discuss the following cases.

Case(i)

Consider the colors 1 and 2. The color class of 1 is $\{v1,w1,en\}$ whereas the color class of 2 is $\{v2,w2,e1\}$. The induced subgraph contains only the bicolored path v1w2w1v2, as v1 and v2 are non adjacent. Thus, C(Hn) is (1,2)-cycle free.

Case(ii)

Consider the colors n+1 and k, k=1,2. The induced subgraph contains the bicolored path en v w1 g1 v1 f1, when k=1 and the bicolored path e1 v w2 g2 v2 f2, when k=2. In both cases, C(Hn) is (k,n+1)-cycle free graph.

Case(iii)

Consider the colors 1 and k, $3 \le k \le n$. The color class of 1 is $\{v1,w1,en\}$ and that of k is $\{wk,ek-1\}$. The induced subgraph contains only the bicolored path v1wkw1 and therefore C(Hn) is (1,k)-cycle free.

Case(iv)

Consider the colors 2 and k, $3 \le k \le n$. By the same argument as in case (iii) , C(Hn) is (2,k)-cycle free.

Case(v)

Consider the colors (n+1) and k,3 \leq k \leq n. The induced subgraph contains only the bicolored path ek-1v wk gk and hence C(Hn) is acyclic.

Case(vi)

Consider the colors j and k, $3 \le j, k \le n$. In this case, the induced subgraph contains only the bicolored edge wj wk and isolated vertices. So, C(Hn) is (j,k)-cycle free graph. Thus, C(Hn) is acyclic.

As C(Hn) has a clique of order n+1, a[C(Hn)] \geq n+1. The colors n+2 to 2n-1 are assigned respectively, to the vertices v3,v4,..., vn. If we assign the same color, say k, to the non adjacent vertices vi,vi+1($3\leq$ i \leq n-1), then,w1viv1vi+1w1 form a bicolored (1,k)-cycle. So, different colors are assigned to the vertices v3,v4,...,vn. Thus, we need minimum 2n-1 colors for acyclically color the vertices of C(Hn) (see Fig.2) and hence, a[C(Hn)] = 2n-1, n \geq 5.


```
Fig 2. a[C(H5)] = 9
```

RESEARCH PAPER

Fig 3. a[T(H5)] = 6

3.5 Remark

 $\begin{array}{ll} (i) & a[C(Hn)]=2n\text{-}1,n=2,3.\\ (ii) & a[C(H4)]=6. \end{array}$

4. ACYCLIC COLORING OF T(Hn) 4.1 Definition

The Total graph [2] of a graph, denoted by T(G), is a graph such that the vertex set of T is V(G)UE(G) and two vertices are adjacent in T iff their corresponding elements are either adjacent or incident in G.

4.2 Structural properties of T(Hn)

By the definition of Total graph, T(Hn) has the following properties.

- (i) <v,ek; k=1 to n> form a clique of order n+1.
- (ii) The neighbors of vk (k=2 to n-1) is {v,ek ,vk-1,vk+1,fk-1,fk,gk,wk}. The neighbors of v1 and vn are respectively {v,e1,v2,vn,f1,fn,g1,w1} and {v,en,vn-1,v1,fn-1,fn,gn,wn}.
- (iii) The neighbors of fk (k=2 to n-1) is {ek ,vk ,ek+1,vk+1,fk-1,fk+1,gk,gk+1}. The neighbors of f1 and fn are respectively {e1,v1,g1,e2,v2,g2,fn ,f2} and {en,vn,gn,e1,v1,g1,fn-1,f1}.
- (iv) The neighbors of gk (k=2 to n-1) is {ek,vk,wk,fk-1,fk}. The neighbors of g1 and gn are respectively {e1,v1,w1,fn,f1} and {en,vn,wn,fn-1,fn}.
- (v) The neighbors of wk is $\{gk, vk\}, k=1$ to n.

Now, we present the coloring algorithm of T(Hn) and then we prove that the coloring is acyclic in the immediate following theorem.

4.3 Coloring Algorithm of T(Hn),n≥ **5** Input: T(Hn)

Volume : 3 | Issue : 3 | March 2013 | ISSN - 2249-555X

```
ejek ← ejk ;
}
}
end for
end for
for k= 1 to n
{
ekvk← ek" ; ekfk← fk' ; vkgk← gk' ;
```

vkwk \leftarrow xk"; gkwk \leftarrow gk"; ekgk \leftarrow dk";

end for for k= 1 to n-1

fkek+1← fk" ; }

end for fne1← fn" ; for k= 1 to n-1

{

vk vk+1 \leftarrow yk' ; fk fk+1 \leftarrow hk' ; fk gk+1 \leftarrow hk" ; fk vk+1 \leftarrow lk" ;

} end for $vnv1 \leftarrow yn'$; fnf1 $\leftarrow hn'$; fng1 $\leftarrow hn''$; fn $v1 \leftarrow ln''$; for k= 1 to n {

gkfk← dk' ; vkfk← lk' ;

end for

v← n+1

for k=1 to n $ek \leftarrow k$; } end for for k=1 to n { wk← n+1 ; } end for for k=1 to n { r← k+2 ; if r ≤ n, vk← r ; else vk← r-n ; } end for for k=1 to n s← k+4 ; if $s \le n$, fk← s ; else fk← s-n · end for for k=1 to n t← k+1 ; if t ≤ n, gk← t; else gk← t-n; end for 4.4 Theorem For any Helm graph Hn, a[T(Hn)]=n+1, n≥5.

Proof

As the two neighbors of wk (k=1 to n) have different colors, any bicolored cycle in T(Hn) can not contain any wk.

Case(i)

Consider the colors (n+1) and k, (k=1 to n). As wk (k=1 to n) can not be contained in any bicolored cycle and then v is the only vertex with color n+1, T(Hn) is ((n+1), k)- cycle free.

Case(ii)

Consider the colors k and k+1, (k=1 to n-1). The induced subgraph of these color classes contains the bicolored path gk ek ek+1 fu fx vy vz, when n=5(where u=n+k-4, if k<4, u= k-4, if $k \ge 4$, x=n+k-3, if k < 3 and x=k-3, if $k \ge 3$, y=n+k-2, if k < 2and y=k-2 ,if k \geq 2, z=n+k-1,if k < 1 and z=k-1,if k \geq 1)and the bicolored paths fu fx vyvz gz and gk ek ek+1 when n \geq 6. Thus, T(Hn) is (k,(n+1))- cycle free graph.

Case(iii)

Consider the colors j and k, $1 \le j, k \le n$ and $k \ne j+1$. The induced subgraph of these color classes is a linear forest as they contain only bicolored paths of various length (the paths varies with |j-k|). Therefore, T(Hn) is (j,k)-cycle free.

Volume : 3 | Issue : 3 | March 2013 | ISSN - 2249-555X

Thus, T(Hn) has no bicolored cycle in all the three cases and hence the coloring is acyclic. By (i) of sec 4.2, T(Hn) need minimum n+1 colors. Therefore, a[T(Hn)] = n+1, $n \ge 5$.

4.5 Remarks

(i) a[T(H3)]= 7. (ii) a[T(H4)] = 7

Conclusion

We found the exact value of acyclic chromatic number of Middle, Central and Total graph of Helm graph families as follows:

(i) $a[M(Hn)] = n+1, n \ge 7.$

(ii) a[C(Hn)]= 2n-1, n≥4.

(iii) a[T(Hn)]= n+1, n≥5.

REFERENCE

[1].J.Akiyama, T.Hamada and I.Yashimura, Graphs TRU Math.10(1974) 41-52. | [2].J.Akiyama, T.Hamada and I.Yashimura, On characterizations of the Middle graphs, TRU | Math.11(1975)35-39. | [3].J.Akiyama, T.Hamada , The Decomposition of line graphs, Middle graphs and Total graphs | of complete graphs into forests, Discrete Math.26(1979)203-208. | [4].R.Arundhadhi and R.Sattanathan, Acyclic coloring of wheel Graph families, Ultra scientist | of physical sciences,vol-23, No 3(A), (2011)709-716. | [5]. R, Arundhadhi and R. Sattanathan, Acyclic coloring of central Graphs , International journal | of computer Applications, Vol-38,12,8, (Jan'2012,Online publications) 55-57. [6].R.Arundhadhi and R.Sattanathan, Acyclic coloring of Central graph of path on n-vertices | and central graph of Fan graph Fm,n, International Conference on Mathematics in | Engineering and Business- March-2012. [7].R,Arundhadhi and R.Sattanathan, Acyclic and star coloring of Bistar Graph families, |International journal of Scientific and Research Publications, vol-2, iss-3(March 2012)1-4. | [8].R, Arundhadhi and R.Sattanathan, Star coloring of Wheel Graph families, International | Journal of computer Applications, Vol-44,23(April,2012,Online publications)26-29. | [9].B.GrunBaum, Acyclic coloring of Planar graphs,Isreal J.Math.14(3)(1973) 390-408. | [10].T.Hamada and I.Yashimura, Traversability and connectivity of the Middle graph of a | graph,Discrete Math.14(1976),247-256. | [11].K.Thilagavathi ,Vernold Vivin.J and Akbar Ali.M ,On harmonius Coloring of Central | Graphs,Advances and application in Discrete Mathematics. 2,(2009) 17-33. | [12].K.Thilagavathi, D.Vijayalakshmi and Roopesh, B-Coloring of central Graphs, International | Journal of computer applications, vol 3(11),(2010) 27 - 29. | [13].K.Thilagavathi and Shahnas Banu, Acyclic coloring of star Graph families, International | journal of computer Applications, vol-7(2), (2010)31-33. |