Acyclic Coloring of Helm Graph Families

KEYWORDS

Acyclic coloring, Middle graph, Central graph and Total graph.

R. Arundhadhi

Dr. K. Thirusangu

Assistant Professor, D.G.Vaishnav College,Chennai. Research Scholar, Bharathiar University, Coimbatore.

> Associate Professor, Department of Mathematics, S.I.V.E.T College, Gowriwakkam,Chennai-73.

ABSTRACT An acyclic coloring of a graph G is a proper vertex coloring (no two adjacent vertices of G have the same color) such that the induced subgraph of any two color classes is acyclic. The minimum number of colors needed to acyclically color the vertices of a graph G is called as acyclic chromatic number and is denoted by a(G). In this paper, we give the exact value of the acyclic chromatic number of Middle, Central and Total graph of Helm Graph families.

1. INTRODUCTION

All graphs considered here are finite, simple and undirected. In the whole paper, the term coloring will be used to refer vertex coloring of graphs. A proper coloring of a graph G is a coloring of the vertices of G such that no two neighbors in G are assigned the same color.

1.1 Definition

A subgraph H of a graph G is said to be induced subgraph if it has all the edges that appear in G over the same vertex set. The subgraph induced by the vertex set $\{v 1, v 2, v 3, \ldots v k\}$ is denoted by $<\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \ldots, \mathrm{vk}>$.

1.2 Definition

A vertex coloring of a graph is said to be acyclic [9] if the induced subgraph of any two color classes is acyclic. In other words, the subgraph induced by any two color classes is a forest.

1.3 Definition

The minimum number of colors needed to acyclically color the vertices of a graph G is called its acyclic chromatic number and is denoted by $a(G)$.

1.4 Definition

A cycle in a graph G is said to be a bicolored (j, k)-cycle if all its vertices are properly colored with two colors j and k. A graph G is said to be a (j, k)-cycle free graph if it do not have any bicolored (j,k)-cycle.

1.5 Definition

The Helm Hn, is the graph obtained from a Wheel graph Wn, by attaching a pendent edge at each vertex of the n-cycle.

In this paper, we obtain the exact value of the acyclic chromatic number of the Helm graph families.

2. ACYCLIC COLORING OF $\mathrm{M}(\mathrm{Hn})$

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$.

2.1 Definition

The Middle graph [2] ,denoted by M(G), of a graph G is the graph obtained from G by inserting a new vertex into every edge of G and by joining those pairs of these new vertices with edges which lie on adjacent edges of G .

In Helm Hn, let v be the root vertex and v1,v2,v3,..., vn be the vertices of n-cycle. Let $w 1, w 2, w 3, \ldots w n$ be the n pendent vertices of Hn . Let $\mathrm{ek}(\mathrm{k}=1$ to n$)$ be the newly added vertex on the edge joining v and $v k$ and $f \mathrm{k}$ ($k=1$ to n) be the newly added vertex on the edge joining $v k$ and $v k+1$. Let $g k$ ($k=1$ to n) be the newly added vertex on the edge joining $v k$ and wk. We use these notations for sections 3 and 4 also.

2.2 Structural properties of $M(H n)$.

By definition 2.1, $\mathrm{M}(\mathrm{Hn})$ has the following structural properties.
(i) $<v, e k ; k=1$ to $n>$ form a clique of order $n+1$.
(ii) For each $k=2$ to n, the neighbors of $v k$ are $\{e k, f k, f k-1, g k\}$ and the neighbors of v 1 are $\{\mathrm{e} 1, \mathrm{f} 1, \mathrm{fn}, \mathrm{g} 1\}$.
(iii) The neighbors of $w k$ is $\{g k\}, k=1$ to n.
(iv) For each $\mathrm{k}=2$ to $\mathrm{n}-1$, the neighbors of fk are $\{\mathrm{fk}$ $1, f k+1, e k, e k+1, v k, v k+1, g k, g k+1\}$ and the neighbors of $f 1$ and fn are respectively $\{\mathrm{fn}, \mathrm{f} 2, \mathrm{e} 1, \mathrm{e} 2, \mathrm{v} 1, \mathrm{v} 2, \mathrm{~g} 1, \mathrm{~g} 2\}$ and\{fn$1, f 1, e n, e 1, v n, v 1, g n, g 1\}$.
(v) For each $\mathrm{k}=1$ to n , ek and gk are adjacent.

We use these structural properties, to find the acyclic chromatic number of $\mathrm{M}(\mathrm{Hn})$. Now, we present a coloring algorithm for $M(H n)$ and we prove that the coloring is acyclic in the immediate following theorem.

2.3 Coloring Algorithm of $M(H n), n \geq 4$.
 Input: $\mathrm{M}(\mathrm{Hn})$

$V \leftarrow \quad\{v, e 1, e 2, \ldots, e n, v 1, v 2, \ldots, v n, f 1, f 2, \ldots, f n, g 1, g 2, \ldots$,gn,w1,w2,...wn\}
$E \leftarrow\left\{e 1^{\prime}, e 2^{\prime}, \ldots e n^{\prime}, ~ e i j^{\prime}(1 \leq i<j<n), e 1^{\prime \prime}, e 2^{\prime \prime}, \ldots e n^{\prime \prime}, f 1^{\prime}, f 2^{\prime}, \ldots\right.$ $\mathrm{fn}^{\prime}, \mathrm{f1}{ }^{\prime \prime}, \mathrm{fl}^{\prime \prime}, \ldots \mathrm{fn}{ }^{\prime \prime}, \mathrm{g} 1^{\prime}, \mathrm{g} 2^{\prime}, \ldots, \mathrm{gn}^{\prime}$,
 , d1",d2",...dn",

$$
\left|1^{\prime},\left|2^{\prime}, \ldots, \ln ,\left|1^{\prime \prime},\right| 2^{\prime \prime}, \ldots, \ln "\right\}\right.
$$

for $k=1$ to n
\{
vek $\leftarrow \mathrm{ek}^{\prime}$;
\}
end for
for $\mathrm{j}=1$ to $\mathrm{n}-1$
\{
for $k=1$ to n
\{
if $\mathrm{j}<\mathrm{k}$,
ejek \leftarrow ejk';
\}
\}
end for
end for
for $k=1$ to n
\{
$\mathrm{ekvk} \leftarrow \mathrm{ek}{ }^{\prime \prime} ; \mathrm{ekfk} \leftarrow \mathrm{fk}^{\prime} ; \mathrm{vkgk} \leftarrow \mathrm{gk}^{\prime} ; \mathrm{gkwk} \leftarrow \mathrm{gk}^{\prime \prime} ; \mathrm{ekgk} \leftarrow \mathrm{dk}^{\prime \prime}$; \}
end for
for $k=1$ to $n-1$
\{
fkek $+1 \leftarrow \mathrm{fk}^{\prime \prime}$;

RESEARCH PAPER

\}
end for
fne $1 \leftarrow$ fn";
for $\mathrm{k}=1$ to $\mathrm{n}-1$
\{
$\mathrm{fk} \mathrm{fk}+1 \leftarrow \mathrm{hk}^{\prime} ; \mathrm{fk} \mathrm{gk}+1 \leftarrow \mathrm{hk}{ }^{\prime \prime} ; \mathrm{fk} \mathrm{vk}+1 \leftarrow \mathrm{lk}^{\prime \prime}$;
\}
end for
fnf1 $\leftarrow \mathrm{hn}^{\prime} ;$ fng $1 \leftarrow \mathrm{hn} \mathrm{\prime}$; fn v1 $\leftarrow \ln { }^{\prime \prime} ;$
for $k=1$ to n
\{
$\mathrm{gkfk} \leftarrow \mathrm{dk}^{\prime} ; \mathrm{vkfk} \leftarrow \mathrm{Ik}^{\prime}$;
\}
end for
$v \leftarrow n+1$;
for $\mathrm{k}=1$ to n
\{
$e k \leftarrow k$;
\}
end for
for $k=1$ to n
\{
$\mathrm{vk} \leftarrow \mathrm{n}+1 ; \mathrm{wk} \leftarrow \mathrm{n}+1$;
\}
end for
for $k=1$ to n
\{
$r \leftarrow k+2$;
if $r \leq n$,
$\mathrm{fk} \leftarrow r$;
else
$\mathrm{fk} \leftarrow \mathrm{r}-\mathrm{n}$;
\}
end for
for $k=1$ to n
\{
$s \leftarrow k+3 ;$
if $s \leq n$,
$\mathrm{gk} \leftarrow \mathrm{s}$;
else
gk $\leftarrow \mathrm{s}-\mathrm{n}$;
\}
end for

2.4 Theorem

The acyclic chromatic number of $M(H n)$ is
$a[M(H n)]=n+1, n \geq 4$.

Proof:

First, we prove that the coloring of $M(H n)$ is acyclic. For this, let us assign colors to the vertices of $M(H n)$, using algorithm2.3.

Case(i)

Consider the colors $n+1$ and $k, k=1$ to n. The color class of $n+1$ is $\{v, v j, w j ; j=1$ to $n\}$ whereas the color class of k is $\{e k$, $\mathrm{fk}-2, \mathrm{gk}-3\}$. The induced subgraph of these color classes is a forest as it contain the bicolored disjoint paths v ek $v k, v k-2$ $f k-2 v k-1$ and $v k+2 g k+2 w k+2$. Therefore, $M(H n)$ is $(k,(n+1))$ cycle free.

Case(ii)

Consider the color k and $k+1,1 \leq k \leq n-1$. The color class of k is $\{e k, f k-2, g k-3\}$ whereas the color class of $k+1$ is $\{e k+1, f k-$ $1, g k-2\}$. The induced subgraph of these color classes is a forest as it contain the bicolored path gk-2 fk-2 fk-1 ek ek+1 and an isolated vertex $g k-3$. Therefore, $M(H n)$ is $(k,(k+1))$ - cycle free graph.

Case(iii)

Consider the colors j and $\mathrm{k}, 1 \leq \mathrm{j}, \mathrm{k} \leq \mathrm{n}$. The induced subgraph of the color classes of these colors is a forest as it contain the bicolored paths $\mathrm{fk}-2$ ej ek and $\mathrm{gk}-3 \mathrm{fj}-2($ when $|\mathrm{j}-\mathrm{k}|=2$) or the bicolored path of length 3 and isolated vertices (when| j-k |
≥ 2). Thus, $\mathrm{M}(\mathrm{Hn})$ is (j, k)-cycle free graph.
In all the three cases, the induced subgraph of any two color classes is acyclic and hence the coloring is acyclic.

As $M(H n)$ has a clique of order $n+1$, we need minimum $n+1$ colors for proper coloring
(see Fig.1). Therefore, $a[M(H n)]=n+1, n \geq 4$.

Fig.1.a[M(H6)] $=7$

2.5 Remark

(i) $a[\mathrm{M}(\mathrm{H} 2)]=5$
(ii) $a[M(H 3)]=6$.

3. ACYCLIC COLORING OF C(Hn)

3.1 Definition

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The central graph of G, denoted by $C(G)[11$], is obtained from G by subdividing each edge exactly once and joining all the non adjacent vertices of G.

3.2 Structural properties of $\mathrm{C}(\mathrm{Hn})$

(i) $\langle v, w k ; k=1$ to $n>$ form a clique of order $n+1$.
(ii) $\{v, f k, g k ; k=1$ to $n\}$ form an independent set.
(iii) The neighbors of $v k,(k=2$ to $n-1)$ is $\{e k, f k, g k\} \cup\{v j ; j=1$ to n and $j \neq k-1, k+1\} \cup\{w j ; j=1$ to n and $j \neq k\}$. The neighbors of $v 1$ is $\{e 1, f 1, g 1) \cup\{v j ; j=3$ to $n-1\} \cup\{w j ; j=2$ to $n\}$ and that of vn is $\{e n, f n, g n\} \cup\{v j ; j=2$ to $n-2\} \cup\{w j ; j=1$ to $n-1\}$
(iv) The neighbors of ek is $\{v, v k\}, k=1$ to n.
(v) The neighbors of gk is $\{\mathrm{vk}, \mathrm{wk}\}, \mathrm{k}=1$ to n .

We use these structural properties in the coloring algorithm of $\mathrm{C}(\mathrm{Hn})$ and we prove that the coloring is acyclic in the immediate following theorem.

3.3 Coloring Algorithm of $C(H n), n \geq 5$.

Input: C(Hn)
$V \leftarrow \quad\{v, e 1, e 2, \ldots, e n, v 1, v 2, \ldots, v n, f 1, f 2, \ldots, f n, g 1, g 2, \ldots$,gn,w1,w2, ...wn\};
E $\leftarrow\left\{e 1^{\prime}, e 2^{\prime}, \ldots . . e n^{\prime}, e 1^{\prime \prime}, e 2^{\prime \prime}, \ldots . e n^{\prime \prime}, I 1^{\prime},\left|2^{\prime}, \ldots,\right| n^{\prime} f 1^{\prime}, f 2^{\prime}, \ldots . f n^{\prime}\right.$,
$f_{1}{ }^{\prime \prime}, f_{2}{ }^{\prime \prime}, \ldots f_{n}{ }^{\prime \prime}, g_{1}{ }^{\prime}, g_{2}{ }^{\prime}, \ldots, g_{n}{ }^{\prime}, g_{1}{ }^{\prime \prime}, g_{2}{ }^{\prime \prime}, \ldots, g_{n}{ }^{\prime \prime}, d_{i j}(1 \leq i, j \leq n, i \neq j), l_{i j}(1 \leq$
$i<j \leq n), h_{i j}(1 \leq i \leq n-2$,
$\mathrm{i}<\mathrm{j} \leq \mathrm{n}, \mathrm{j} \neq \mathrm{ij}+1)$; ;
for $k=1$ to n
\{
v ek $\leftarrow \mathrm{ek}^{\prime} ; \mathrm{ek} \mathrm{vk} \leftarrow \mathrm{ek}{ }^{\prime \prime} ; \mathrm{v} \mathrm{wk} \leftarrow \mathrm{Ik}^{\prime} ;$
\}
end for
for $k=1$ to n \{

RESEARCH PAPER

```
vk fk }\leftarrow\mp@subsup{\textrm{fk}}{}{\prime};\mp@subsup{\textrm{vk gk}}{\textrm{gk}}{\mp@code{gk}
}
end for
for k= 1 to n-1
{
if k<n,
fk vk+1
}
end for
fn v1 \leftarrowfn";
for j= 1 to n
{
fork=1 to n
{
if j\not=k,
vj wk }\leftarrowdjk
}
}
end for
end for
for j= 1 to n
{
for k=1 to n
{
if j<k,
wj wk }\leftarrow & lk 
}
}
end for
end for
for k= 3 to n-1
{
v1 vk \leftarrowh1k;
}
end for
for j= 2 to n-2
{
for k= j+2 to n
{
vj vk \leftarrowhjk;
}
end for
end for
v}\leftarrow\textrm{n}+1\mathrm{ ;
for k=1 to n
{
fk}\leftarrow\textrm{n}+1;\textrm{gk}\leftarrow\textrm{n}+1
}
end for
fork=1 to n
{
wk}\leftarrowk
}
end for
for k= 1 to 2
{
vk}\leftarrow\textrm{k}
}
end for
for k=3 to n
{
vk}\leftarrow\textrm{n}+\textrm{k}-1
}
end for
for k= 1 to n m
{
r}\leftarrow\textrm{k}+1\mathrm{ ;
if r s n,
ek\leftarrowr;
else
ek}\leftarrowr-n
}
end for
```

3.4 Theorem

The acyclic chromatic number of $\mathrm{C}(\mathrm{Hn})$ is
$a[C(H n)]=2 n-1, n \geq 5$.

Proof

We prove the theorem by showing the coloring given in sec 3.3 is acyclic.

As the two neighbors of each fk ($\mathrm{k}=1$ to n) have different colors, any bicolored cycle cannot contain fk . The same argument is true for $\mathrm{gk}, 3 \leq \mathrm{k} \leq \mathrm{n}$. Similarly, any bicolored cycle cannot contain the path v ek $v k$ ($k=1$ to n), since the two neighbors of ek ($k=1$ to n) have different colors. Since the color class of $k(n+2 \leq k \leq 2 n-1)$ is a single vertex vk-n+1, any bicolored cycle cannot contain the vertices $\mathrm{vj}(3 \leq \mathrm{j} \leq \mathrm{n})$. So, we discuss the following cases.

Case(i)

Consider the colors 1 and 2 . The color class of 1 is $\{v 1, w 1$,en $\}$ whereas the color class of 2 is $\{v 2, w 2, e 1\}$. The induced subgraph contains only the bicolored path v1w2w1v2, as v1 and v2 are non adjacent. Thus, $\mathrm{C}(\mathrm{Hn})$ is $(1,2)$-cycle free.

Case(ii)

Consider the colors $\mathrm{n}+1$ and $\mathrm{k}, \mathrm{k}=1,2$. The induced subgraph contains the bicolored path en $\vee \mathrm{w} 1 \mathrm{~g} 1 \mathrm{v} 1 \mathrm{f} 1$, when $\mathrm{k}=1$ and the bicolored path e1 v w2 g2 v2 f2, when $k=2$. In both cases, $C(H n)$ is $(k, n+1)$-cycle free graph.

Case(iii)

Consider the colors 1 and $k, 3 \leq k \leq n$. The color class of 1 is $\{v 1, w 1, e n\}$ and that of k is $\{w k, e k-1\}$. The induced subgraph contains only the bicolored path v1wkw1 and therefore $\mathrm{C}(\mathrm{Hn})$ is ($1, \mathrm{k}$)-cycle free.

Case(iv)

Consider the colors 2 and $k, 3 \leq k \leq n$. By the same argument as in case (iii) , $\mathrm{C}(\mathrm{Hn})$ is $(2, \mathrm{k})$-cycle free.

Case(v)

Consider the colors $(n+1)$ and $k, 3 \leq k \leq n$. The induced subgraph contains only the bicolored path ek-1v wk gk and hence $\mathrm{C}(\mathrm{Hn})$ is acyclic.

Case(vi)

Consider the colors j and $\mathrm{k}, 3 \leq \mathrm{j}, \mathrm{k} \leq \mathrm{n}$. In this case, the induced subgraph contains only the bicolored edge wj wk and isolated vertices. So, $\mathrm{C}(\mathrm{Hn})$ is (j, k)-cycle free graph.
Thus, $\mathrm{C}(\mathrm{Hn})$ is acyclic.
As $C(H n)$ has a clique of order $n+1, a[C(H n)] \geq n+1$. The colors $n+2$ to $2 n-1$ are assigned respectively, to the vertices $v 3, v 4, \ldots$,vn. If we assign the same color, say k, to the non adjacent vertices vi,vi+1($3 \leq i \leq n-1$), then,w1viv1vi+1w1 form a bicolored (1,k)-cycle. So, different colors are assigned to the vertices $\mathrm{v} 3, \mathrm{v} 4, \ldots, \mathrm{vn}$. Thus, we need minimum $2 \mathrm{n}-1$ colors for acyclically color the vertices of $\mathrm{C}(\mathrm{Hn})$ (see Fig.2) and hence, $a[C(H n)]=2 n-1, n \geq 5$.

Fig 2. $\mathrm{a}[\mathrm{C}(\mathrm{H} 5)]=9$

Fig 3. $\mathrm{a}[\mathrm{T}(\mathrm{H} 5)]=6$
3.5 Remark
(i) $\mathrm{a}[\mathrm{C}(H \mathrm{H})]=2 \mathrm{n}-1, \mathrm{n}=2,3$.
(ii) $\mathrm{a}[\mathrm{C}(\mathrm{H} 4)]=6$.

4. ACYCLIC COLORING OF T(Hn)

4.1 Definition

The Total graph [2] of a graph, denoted by $T(G)$, is a graph such that the vertex set of T is $V(G) \cup E(G)$ and two vertices are adjacent in T iff their corresponding elements are either adjacent or incident in G.

4.2 Structural properties of $\mathrm{T}(\mathrm{Hn})$

By the definition of Total graph, $\mathrm{T}(\mathrm{Hn})$ has the following properties.
(i) $\langle v, e k ; k=1$ to $n>$ form a clique of order $n+1$.
(ii) The neighbors of $\mathrm{vk}(\mathrm{k}=2$ to $\mathrm{n}-1)$ is $\{\mathrm{v}, \mathrm{ek}, \mathrm{vk}-1, \mathrm{vk}+1, \mathrm{fk}$ $1, f \mathrm{k}, \mathrm{gk}, w \mathrm{k}\}$. The neighbors of v 1 and vn are respectively $\{v, e 1, v 2, v n, f 1, f n, g 1, w 1\}$ and $\{v, e n, v n-1, v 1, f n-1, f n, g n, w n\}$.
(iii) The neighbors of fk ($\mathrm{k}=2$ to $\mathrm{n}-1$) is $\{\mathrm{ek}, \mathrm{vk}, \mathrm{ek}+1, \mathrm{vk}+1, f \mathrm{fk}-$ $1, f \mathrm{k}+1, \mathrm{gk}, \mathrm{gk}+1\}$.The neighbors off1 and fn are respectively $\{\mathrm{e} 1, \mathrm{v} 1, \mathrm{~g} 1, \mathrm{e} 2, \mathrm{v} 2, \mathrm{~g} 2, \mathrm{fn}, \mathrm{f} 2\}$ and $\{\mathrm{en}, \mathrm{vn}, \mathrm{gn}, \mathrm{e} 1, \mathrm{v} 1, \mathrm{~g} 1, \mathrm{fn}-$ $1, f 1\}$.
(iv) The neighbors of $\mathrm{gk}(\mathrm{k}=2$ to $\mathrm{n}-1$) is $\{\mathrm{ek}, \mathrm{vk}, \mathrm{wk}, \mathrm{fk}-1, \mathrm{fk}\}$. The neighbors of g 1 and gn are respectively $\{\mathrm{e} 1, \mathrm{v} 1, \mathrm{w} 1, \mathrm{fn}, \mathrm{f} 1\}$ and \{en,vn,wn,fn-1,fn\}.
(v) The neighbors of $w k$ is $\{g k, v k\}, k=1$ to n.

Now, we present the coloring algorithm of $\mathrm{T}(\mathrm{Hn})$ and then we prove that the coloring is acyclic in the immediate following theorem.

4.3 Coloring Algorithm of $T(H n), n \geq 5$

Input: T(Hn)
$V \leftarrow \quad\{v, e 1, e 2, \ldots, e n, v 1, v 2, \ldots, v n, f 1, f 2, \ldots, f n, g 1, g 2, \ldots$

$$
g n, w 1, w 2, \ldots, w n\}
$$

$$
\begin{aligned}
& \prime g n, w 1, w 4, \ldots, w n\} \\
& E \leftarrow\left\{e 1^{\prime}, e 2^{\prime}, \ldots e n^{\prime}, ~ e i j^{\prime}(1 \leq i<j<n),\right. \text { e1"',e2"',..en"', f1',f2', .. }
\end{aligned}
$$

$$
\mathrm{fn}^{\prime}, \mathrm{f}^{\prime \prime}, \mathrm{f2}^{\prime \prime}, \ldots \mathrm{fn}{ }^{\prime \prime}, \mathrm{g}^{\prime}, \mathrm{g} 2^{\prime}, ., \mathrm{gn}{ }^{\prime},
$$

g1",g2",...gn", h1',h2',...,hn',h1",h2", ,..,hn", d1', d2', ...dn'

$$
, \mathrm{d} 1^{\prime \prime}, \mathrm{d} 2^{\prime \prime}, \ldots \mathrm{dn}{ }^{\prime \prime} \text {, }
$$

$\left|1^{\prime},\left|2^{\prime}, \ldots,\left|n^{\prime},\left|1^{\prime \prime},\right| 2^{\prime \prime}, \ldots, n^{\prime \prime}, x 1^{\prime}, x 2^{\prime}, \ldots, x n^{\prime}, x 1^{\prime \prime}, x 2^{\prime \prime}, \ldots, x n^{\prime \prime}\right.\right.\right.$, $\left.y 1^{\prime}, y 2^{\prime}, \ldots, y n^{\prime}\right\}$
for $\mathrm{k}=1$ to n
\{
vek $\leftarrow \mathrm{ek}^{\prime} ; \mathrm{vvk} \leftarrow \mathrm{xk}^{\prime}$;
\}
end for
for $\mathrm{j}=1$ to $\mathrm{n}-1$
\{
for $k=1$ to n
\{
if $\mathrm{j}<\mathrm{k}$,

```
ejek }\leftarrow\mathrm{ ejk;
}
end for
end for
for k= 1 to n
{
ekvk\leftarrowek"; ekfk\leftarrowfk';vkgk \leftarrow gk';
vkwk }\leftarrow\textrm{xk}"; gkwk\leftarrow \leftarrowk""; ekgk \leftarrowdk";
}
end for
for k= 1 to n-1
{
fkek+1\leftarrowfk" ;
}
end for
fne1\leftarrowfn";
fork=1 to n-1
{
vk vk+1\leftarrowyk';fk fk+1\leftarrowhk';fk gk+1\leftarrowhk'";fk vk+1\leftarrowlk";
}
end for
vnv1 \leftarrow yn'; fnf1 }\leftarrow\textrm{hn
fng1 \leftarrow hn"; fn v1\leftarrow ln"';
for k=1 to n
{
gkfk}\leftarrowd\mp@subsup{\textrm{dk}}{}{\prime};\textrm{vkfk}\leftarrow|\mp@subsup{\textrm{lk}}{}{\prime}
}
end for
v}\leftarrown+
for k=1 to n
{
ek}\leftarrow\textrm{k}
}
end for
for k=1 to n
{
wk}\leftarrow\textrm{n}+1\mathrm{ ;
}
end for
fork=1 to n
{
r}\leftarrowk+2
if r\leqn,
vk}\leftarrowr\mathrm{ ;
else
vk\leftarrowr-n ;
}
end for
for k=1 to n
{
s}\leftarrowk+4
if s\leqn,
fk}\leftarrow\textrm{s}\mathrm{ ;
else
fk}\leftarrow\textrm{s}-\textrm{n}\mathrm{ ;
}
end for
for k=1 to n
{
t\leftarrowk+1;
if t \leq n,
gk\leftarrowt;
else
gk}\leftarrowt-n
}
end for
4.4 Theorem
For any Helm graph Hn,
a[T(Hn)]=n+1, n\geq5.
```


Proof

As the two neighbors of $w k$ ($k=1$ to n) have different colors, any bicolored cycle in $\mathrm{T}(\mathrm{Hn})$ can not contain any wk.

RESEARCH PAPER

Case(i)
Consider the colors ($n+1$) and k, $(k=1$ to n). As wk ($k=1$ to n) can not be contained in any bicolored cycle and then v is the only vertex with color $n+1, T(H n)$ is (($n+1), k$)- cycle free.

Case(ii)

Consider the colors k and $\mathrm{k}+1$, $(\mathrm{k}=1$ to $\mathrm{n}-1)$. The induced subgraph of these color classes contains the bicolored path gk ek ek+1 fu fx vy vz, when $n=5$ (where $u=n+k-4$, if $k<4$, $u=k-4$, if $k \geq 4, x=n+k-3$, if $k<3$ and $x=k-3$, if $k \geq 3, y=n+k-2$, if $k<2$ and $y=k-2$, if $k \geq 2, z=n+k-1$, if $k<1$ and $z=k-1$, if $k \geq 1$) and the bicolored paths fu fx vyvz gz and gk ek ek +1 when $n \geq 6$. Thus, $T(H n)$ is $(k,(n+1))$ - cycle free graph.

Case(iii)

Consider the colors j and $\mathrm{k}, 1 \leq \mathrm{j}, \mathrm{k} \leq \mathrm{n}$ and $\mathrm{k} \neq \mathrm{j}+1$. The induced subgraph of these color classes is a linear forest as they contain only bicolored paths of various length (the paths varies with $|j-k|)$. Therefore, $T(H n)$ is (j, k)-cycle free.

Thus, $\mathrm{T}(\mathrm{Hn})$ has no bicolored cycle in all the three cases and hence the coloring is acyclic. By (i) of sec 4.2, $\mathrm{T}(\mathrm{Hn})$ need minimum $n+1$ colors. Therefore, $a[T(H n)]=n+1, n \geq 5$.

4.5 Remarks

(i) $\mathrm{a}[\mathrm{T}(\mathrm{H} 3)]=7$.
(ii) $a[\mathrm{~T}(\mathrm{H} 4)]=7$

Conclusion

We found the exact value of acyclic chromatic number of Middle, Central and Total graph of Helm graph families as follows:
(i) $a[M(H n)]=n+1, n \geq 7$.
(ii) $a[C(H n)]=2 n-1, n \geq 4$.
(iii) $a[T(H n)]=n+1, n \geq 5$.

REFERENCE [1].J.Akiyama, T.Hamada and I.Yashimura, Graphs TRU Math.10(1974) 41-52. | [2].J.Akiyama, T.Hamada and I.Yashimura, On characterizations of the Middle graphs, TRU | Math.11(1975)35-39. | [3].J.Akiyama, T.Hamada ,The Decomposition of line graphs, Middle graphs and Total graphs | of complete graphs into forests, Discrete Math.26(1979)203208. | [4].R.Arundhadhi and R.Sattanathan, Acyclic coloring of wheel Graph families, Ultra scientist | of physical sciences, vol23,No 3(A), (2011)709-716. | [5].R,Arundhadhi and R.Sattanathan, Acyclic coloring of central Graphs, International journal | of computer Applications, Vol-38,12,8, (Jan'2012,Online publications) 55-57. | [6].R.Arundhadhi and R.Sattanathan, Acyclic coloring of Central graph of path on n-vertices | and central graph of Fan graph Fm,n, International Conference on Mathematics in | Engineering and Business- March-2012. | [7].R,Arundhadhi and R.Sattanathan, Acyclic and star coloring of Bistar Graph families, | International journal of Scientific and Research Publications,vol-2,iss-3(March 2012)1-4. | [8].R,Arundhadhi and R.Sattanathan, Star coloring of Wheel Graph families, International | Journal of computer Applications, Vol-44,23(April,2012,Online publications)26-29. | [9].B.GrunBaum, Acyclic coloring of Planar graphs,Isreal J.Math.14(3)(1973) 390-408. | [10].T.Hamada and I.Yashimura, Traversability and connectivity of the Middle graph of a | graph,Discrete Math.14(1976),247-256. | [11].K.Thilagavathi ,Vernold Vivin.J and Akbar Ali.M ,On harmonius Coloring of Central | Graphs,Advances and application in Discrete Mathematics. 2,(2009) 17-33. | [12].K.Thilagavathi, D.Vijayalakshmi and Roopesh, B-Coloring of central Graphs, International | Journal of computer applications, vol 3(11),(2010) 27 - 29. | [13].K. Thilagavathi and Shahnas Banu, Acyclic coloring of star Graph families, International | journal of computer Applications,vol-7(2),(2010)31-33. |

