
140 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 5 | May 2013 | ISSN - 2249-555XReseaRch PaPeR Computer Science

Query Planning of Continuous Aggregation Queries
Over Network

Prof. Y. B. Gurav Mrs. Manjiri Deshmukh

Kothrud, Pune Kothrud, Pune

Keywords Algorithm, coherency, continuous queries, data dissemination, distributed query
processing, performance

ABSTRACT To monitor the time varying data we required some queries and those queries are continuous queries which
provides result for online decision making Typically a user desires to obtain the value of some aggregation

function over distributed data items, for example, to know value of portfolio for a client; or the AVG of temperatures sensed
by a set of sensors. In these queries a client specifies a coherency requirement as part of the query. This paper presents a
low-cost, scalable technique to answer continuous aggregation queries using a network of aggregators of dynamic data
items. In such a network of data aggregators, each data aggregator serves a set of data items at specific coherencies. Just
as various fragments of a dynamic web-page are served by one or more nodes of a content distribution network (CDN)
our technique involves decomposing a client query into sub-queries and executing sub-queries on judiciously chosen data
aggregators with their individual sub-query incoherency bounds. Provide a technique for getting the optimal set of sub-
queries with their incoherency bounds which satisfies client query's coherency requirement with least number of refresh
messages sent from aggregators to the client. For estimating the number of refresh messages, Build a query cost model
which can be used to estimate the number of messages required to satisfy the client specified incoherency bound.

I.INTRODUCTION
A. Overview
The web is becoming a universal medium for information
publication and use. Such information is often dynamic, al-
lowing users to employ it for online decision making. Data
delivered over the internet is distributed and is increasingly
being used for personalized experiences. Typically user de-
sires to obtain the value of some function over the distrib-
uted data items. Given the increasing number of applications
that make the use of highly dynamic data, there is signifi-
cant interest in systems that can efficiently deliver relevant
updates automatically. For this scenario, answering user que-
ries requires acquiring dynamic data values from distributed
sources and aggregating those data values to satisfy user’s
requirement. Because these queries involve aggregation of
dynamic data items, query results must be refreshed continu-
ously so that users get the updated notifications of the data.
These are long running queries which allow the data to be
delivered to the user over fast changing data from distrib-
uted sources executed over data aggregators leading to sig-
nificant improvement in use of network and resources.

Data Aggregators can be called as organizers involved in
compiling information from detailed database on individuals
and selling information to others. For online purpose where
dynamic data is of prime importance, data aggregators can
gather the information from designated websites and provid-
ing the data to the user. The process of extracting raw statisti-
cal information from the database or data repository, putting
it all together to produce statistical output that can be used
by the user and has relevance to statistical query it seeks to
satisfy. Absolute difference in the value of data item at the
data source and the value known to the client.

Continuous queries are used to monitor changes to time
varying data and to provide results useful for online decision
making. This paper,” Query planning for Continuous Que-
ries over a Network of data Aggregators”, presents a low-
cost, scalable technique to answer continuous aggregation
queries using a content distribution network of dynamic data
items. It saves the time and the user spending low cost. A
continuous query cost model which can be used to estimate
the number of messages required to satisfy the client speci-

fied incoherency bound and optimal query plan for continu-
ous aggregation queries.

II. LITERATURE SURVEY
Web sites become popular, they’re increasingly vulnerable to
the flash crowd problem, in which request load overwhelms
some aspect of the site’s infrastructure, such as the front end
Web server, network equipment, or bandwidth, or (in more
advanced sites) the back-end transaction-processing infra-
structure. Our approach is based on the observation that
serving Web content from a single location can present seri-
ous problems for site scalability, reliability, and performance.
We thus devised a system to serve requests from a variable
number of surrogate origin servers at the network edge.
Running applications on a globally distributed network of
computers provides many of the same advantages as simple
content delivery: capacity on demand, cost-effective use of
shared resources, ability to respond to users without com-
municating over long distances, and so on[3].

As Internet traffic continues to grow and web sites become
increasingly complex, performance and scalability are major
issues for web sites. Web sites are increasingly relying on
dynamic content generation applications to provide website
visitors with dynamic, interactive, and personalized experi-
ences. However, dynamic content generation comes at a cost
- each request requires computation as well as communica-
tion across multiple components. To address these issues,
several back end caching approaches have been proposed,
including query result caching and fragment level caching.
The paper, presents an approach and an implementation of
a dynamic proxy caching technique which combines the ben-
efits of both proxy-based and back end caching approaches.
The results of this implementation indicate that our tech-
nique is capable of providing order-of magnitude reductions
in bandwidth and response times in real-world[2].

III. NETWORK OF DATA AGGREGATOR (DA)
A. Data Aggregator
The required data updates for query evaluation at a DA can
be obtained either by sources pushing them continuously or
the DA pulling them whenever required. In both these cases,
it is desired that client’s coherency and fidelity requirements

INDIAN JOURNAL OF APPLIED RESEARCH X 141

Volume : 3 | Issue : 5 | May 2013 | ISSN - 2249-555XReseaRch PaPeR

are met with the minimum number of data value refresh mes-
sages. Thus efficiency of query evaluation at the DA is quanti-
fied in terms of the number of refreshes done for various data
items involved in the queries executing at the DA. Reducing
the number of refreshes reduces computational overheads
at the DA, load on the data servers and network bandwidth.
Since data sources have exact data values, we can expect
that a push based approach can deliver the required bound-
ed incoherency with the given fidelity using a smaller number
of refresh messages.

Fig 1 Query execution at data Aggregators

B. Data incoherency
Data refresh from data sources to clients can be done using
push- or pull-based mechanisms. In a push-based mecha-
nism data sources send update messages to clients on
their own whereas in a pull based mechanism data sources
send messages to the client only when the client makes a
request. We assume the push based mechanism for data
transfer between data sources and clients. For scalable han-
dling of push based data dissemination, network of data
aggregators are proposed in the paper [5]. In such network
of data aggregators, data refreshes occur from data sources
to the clients through one or more data aggregators. In this
paper, we assume that each data aggregator maintains its
configured incoherency bounds for various data items. Data
accuracy can be defined in terms of incoherency of a data
item, defined as absolute difference between the value id
data at the data source and value known to the client of a
data. Let v(t) denote the value of ith data item at the data
source at a time t; and let value the data item known to
the client be u(t). Then the data incoherency at the client is
given by lv(t)-u(t).

1) Aggregate Queries and Their Execution : Consider a
client query Q=50d1+200d2+150d3, where d1, d2, d3 are
different data items with a required incoherency bound of
$80. We want to execute this query over the data aggre-
gators to minimize the number of refreshes. For answering
the multidata aggregation query, there are three options for
the client to get the query results. First, the client may get
the data items d1, d2, and d3 separately. The query inco-
herency bound can be divided among data items in various
ways ensuring that query incoherency is below the incoher-
ency bound. Second, if a single DA can disseminate all three
data items required to answer the client query, the DA can
construct a composite data item corresponding to the client
query (dq= 50d1 + 200d2 + 150d3) and disseminate the
result to the client so that the query incoherency bound is not
violated. A third option is to divide the query into a number
of sub queries and get their values from individual DAs. In
that case, the client query result is obtained by combining
the results of multiple sub queries since different data aggre-
gators disseminate different subsets of data items, no data
aggregator may have all the data items required to execute
the client query even if an aggregator can refresh all the data
items, it may not be able to satisfy the query coherency re-
quirements. In such cases the query has to be executed with
data from multiple aggregators.

Fig 2 (A)Single data Aggregator (B)Network of Data Ag-
gregators

3)Weighted Additive Aggregation Query : Value of a continu-
ous weighted additive aggregation query, at time t, can be
calculated as: Vq(t)=∑ (Vqi(t)*Wqi). Where Vq is the value of a
client query q involving nq data items with the weight of the
ith data item being wqi,1≤i≤nq. Suppose the result for the
query given by (1) needs to be continuously provided to a
user at the query incoherency bound Cq. Then, the dissemi-
nation network has to ensure that- |∑ (Vqi(t)-Uqi(t))*Wqi|≤Cq
Whenever data values at sources change such that query in-
coherency bound is violated, the updated value should be
refreshed to the client. If the network of aggregators can en-
sure that the ith data item has incoherency bound Cqi, then
the following condition ensures that the query incoherency
bound Cq is satisfied.

The problem of choosing sub queries while minimizing query
execution cost is an NP-hard problem. Efficient algorithms
are given to choose the set of sub queries and their corre-
sponding incoherency bounds for a given client query. For
solving the above problem of optimally dividing the client
query into sub queries, we first need a method to estimate
the query execution cost for various alternative options. As
we divide the client query into sub queries such that each
sub query gets executed at different aggregator nodes, the
query execution cost (i.e., number of refreshes) is the sum of
the execution costs of its constituent sub queries.

Thus query Q can be divided in two alternative ways:

Plan 1. Result of sub query 50d1+150d3 is served by a1,
whereas value of d2 is served by a2.

Plan 2. Value of d3 is served by a1, whereas result of Sub
query 50d1 + 200d2 is served by a2.

IV DATA DISSEMINATION COST MODEL
Here the model is presented to estimate the number of re-
freshes required to disseminate a data item while maintaining
a certain incoherency bound. There are two primary factors
affecting the number of messages that are needed to main-
tain the coherency requirement: 1) the coherency require-
ment itself and 2) dynamics of the data.

Fig.3:Data Dissemination of Multiple Data item

A. Incoherency Bound Model
Incoherency bound model is used for estimating depend-
ency of data dissemination cost over the desired incoherency
bound. As per this model, the number of data refreshes is in-

142 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 3 | Issue : 5 | May 2013 | ISSN - 2249-555XReseaRch PaPeR

versely proportional to the square of the incoherency bound
(1/C2).. Data dissemination cost 1/C2

B.Data Dynamics Model
There are two possible options to model data dynamics. As
a first option, the data dynamics can be quantified based on
standard deviation of the data item values. It is calculated by
summing up the products of the deviations of the data item
values from their mean that varies between -1 and 1 with
higher (absolute) values signifying that data points can be
considered linear.

As a second option we considered Fast Fourier Transform
(FFT) which is used in the digital signal processing domain to
characterize a digital signal. FFT captures number of changes
in data value, amount of changes, and their timings.

Specifically, the cost of data dissemination for a data item will
be proportional to data sumdiff defined as

Rs= |Si-Si-1| (4)

C.Combining Data Dissemination Models
Number of refresh messages is proportional to data sumdiff
Rs and inversely proportional to square of the incoherency
bound (C2). Further, we can see that we need not disseminate
any message when either data value is not changing (Rs =0)
or incoherency bound is unlimited (1/C2). Thus, for a given
data item S, disseminated with an incoherency bound C, the
data dissemination cost is proportional to Rs/C2. In the next
section, we use this data dissemination cost model for devel-
oping cost model for additive aggregation queries.

D. Cost Model For Additive Aggregation Query
Consider an additive query over two data items P and Q with
weights wp and wq, respectively; Number of pushes versus
data sumdiff estimate its dissemination cost. If data items are
disseminated separately, the query sumdiff will be

Instead, if the aggregator uses the information that client is
interested in a query over P and Q (rather than their indi-
vidual values), it creates and pushes a composite data item
(WPp+WQq) then the query sumdiff will be

Where Rquery is clearly less than or equal compared to Rda-
ta. Thus, we need to estimate the sumdiff of an aggregation
query given the sumdiff values of individual data items (i.e.,
Rp and Rq). Only data aggregators are in a position to calcu-
late Rquery as different data items may be disseminated from
different sources.

V. QUERY PLANNING FOR WEIGHTED ADDITIVE AGGRE-
GATION QUERIES
For executing an incoherency bounded continuous query, a
query plan is required. The query planning problem can be
stated as:

Inputs:1. A network of data aggregators in the form of a rela-
tion f (A; D;C)specifying the N data aggregators ak €A(1 ≤k
≤N), set Dk is subset of D of data items disseminated by the
data aggregator ak, and incoherency bound tkj which the ag-
gregator ak can ensure for each data item dkj €Dk.

2. Client query q and its incoherency bound Cq. An additive
aggregation query q can be represented as∑ wqi dqi, where
wqi is the weight of the data item dqi for 1 ≤i≤ nq.

Outputs:
1. qk for 1≤ k≤ N, i.e., sub query for each data aggregator ak.

2. Cqk for 1≤ k ≤N, i.e., incoherency bounds for all the sub

queries.

Thus, to get a query plan we need to perform following tasks:

1. Determining sub queries: For the client query q get sub
queries qks for each data aggregator.

2. Dividing incoherency bound: Divide the query incoher-
ency bound Cq among sub queries to get Cqk s.

For optimal query planning, above tasks are to be performed
with the following objective and constraints: Optimization
objective. Number of refresh messages is minimized. , as it
is proved that, for a sub query qk, the estimated number of
refresh messages is given by

-Rqk/C2qk, where Rqk is the sumdiff of the sub query qk; Cqk
is the incoherency bound assigned to it and k, the propor-
tionality factor, is the same for all sub queries of a given query
q. Thus, total number of refresh messages is estimated as

Hence, Zq needs to be minimized for minimizing the number
of refreshes.

A.Greedy Heuristics for Deriving the Data-items
Here is given the outline of greedy algorithm for deriving
data-items. First, we get a set of maximal data-items (Mq)
corresponding to all the data aggregators in the network.

The maximal subquery for a data aggregator is defined as
the largest part of the query which can be disseminated by
the DA (i.e., the maximal subquery has all the query data
items which the DA can disseminate). For example, consider
a client query 50d1 + 200d2 +150d3. For the data aggrega-
tors a1 and a2 given in Example 1, the maximal subquery for
a1 will be m1=50d1 + 150d3, whereas for a2 it will be m2
= 50d1 + 200d2. For the given client query (q) and relation
consisting of data aggregators, data items, and data incoher-
ency bounds (f(A; D;C)) maximal data-items can be obtained
for each data aggregator by forming subquery involving all
data items in the intersection of query data items and those
being disseminated by the DA. This operation can be per-
formed in O(|q|:max|Dk|) where|q|is number of data items in
the query, max|Dk| is the maximum number of data items dis-
seminated by any DA. For each subquery m €Mq, its sumdiff
Rm can be calculated.

1) Query Plan with Pre-decided Incoherency Bound Allo-
cation : For the given client query (q) and mapping between
data aggregators and the corresponding {data-item, data in-
coherency bound} pairs (f: D_(S, C)) maximal sub-queries can
be obtained or each data aggregator.

Let A be the set of such maximal data-items. In this set, each
query a €A can be disseminated by a designated data ag-
gregator at the assigned incoherency bound. For each sub-
query a €A, its Sumdiff Ra is calculated using Equation.

Using the set A and sub-query sumdiffs, we use the algorithm
to get the set of sub-queries minimizing the query cost.

Each sub-query a €A is represented by the set of data items
covered by it. As we need to minimize the query cost, a data-
item with minimum cost per data item is chosen in each itera-
tion of the algorithm i.e., criteria minimize (Ra/Ca2|a|).

All data items covered by the selected data-item are re-
moved from all the remaining data-item in A before perform-
ing the next iteration.

INDIAN JOURNAL OF APPLIED RESEARCH X 143

Volume : 3 | Issue : 5 | May 2013 | ISSN - 2249-555XReseaRch PaPeR

REFERENCE [1] Rajeev Gupta and Krithi Ramamritham, “Query planning For Continuous Aggregation Query Over A Network Of Data Aggregators,” IEEE
Knowledge and Data Engineering, Vol. no.24, no. 6, June 2012. | [2] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl,

“Globally Distributed Content Delivery,” IEEE Internet Computing, vol. 6, no. 5, pp. 50-58, Sept. 2002. | [3]D. VanderMeer, A. Datta, K. Dutta, H. Thomas, and
K.Ramamritham, “Proxy-Based Acceleration of Dynamically Generated Content on the World Wide Web,” ACM Trans. Database Systems, vol. 29, pp. 403-443, June
2004. | [4] R. Gupta, A. Puri, and K. Ramamritham, “Executing Incoherency Bounded Continuous Queries at Web Data Aggregators,” Proc .14th Int’l Conf. World Wide
Web (WWW), 2005 | [5] R. Gupta and K. Ramamritham, “Optimized Query Planning of Continuous Aggregation Queries in Dynamic Data Dissemination Networks,”
Proc. 16th Int’l Conf. World Wide Web (WWW) 2007. | [6] Y. Zhou, B. Chin Ooi, and K.-L. Tan, “Disseminating Streaming Data in a Dynamic Environment: An Adaptive
and Cost Based Approach,” The Int’l J. Very Large Data Bases, vol. 17, pp. 1465-1483, 2008. | [7] Rajeev Gupta and Krithi Ramamritham,” Scalable Execution of
Continuous Aggregation Queries over Web Data”. Content of IEEE Internet Computing, January/February 2012 | [8] S. Shah, K. Ramamritham, and C. Ravishankar,
“Client Assignment in Content Dissemination Networks for Dynamic Data,” Proc. 31st Int’l Conf. Very Large Data Bases (VLDB), 2005. | [9] “ Query Cost Model
Validation for Sensor Data,”www.cse.iitb.ac.in/~grajeev/sumdiff/RaviVijay_BTP06.pdf, 2011. | | [10] C. Olston, J. Jiang, and J. Widom, “Adaptive Filter for Continuous
Queries over Distributed Data Streams,” Proc. ACM SIGMOD Int Conf. Management of Data, 2003.

THE GREEDY ALGORITHM FOR QUERY PLAN SELECTION
Result Ø
While A ≠ Ø
Choose a data-item a A with criteria ψ
Result Result υ a
A A-{a}
For each data element e a
For each b A
b b-{e}
If b = Ø
A A-{b}
Else
Calculate sumdiff for modified b
Return Result
Fig.4.Greedy Algorithm.

VII. QUERY PLAN
A. Overheads of Query Plan
Here the time overheads for various query planning opera-
tions is reported. We measured these costs by varying the
number of data items being disseminated by the network,
between 40 and 200.

For various sumdiff-based algorithms, we need to maintain
the sumdiff values of various data items (proportional to the
number of data items being disseminated) and the correla-
tion measure for each pair of data items (proportional to the
square of the number of data items), in addition to the query
dependent planning cost.

Higher cost of query planning, for the sumdiff-based algo-
rithms, is justified by the savings we achieve in terms of num-
ber of messages for the whole duration of the continuous
query. The query planning cost of random and minCost is
higher as they require more iterations of the algorithm (i.e.,
more data-items) compared to the maxGain algorithm.

A. Optimal Query Planning Problem Is NP-Hard
Optimal query planning problem for MAX queries is NPhard.
This can be proved by mapping the set cover problem to this
optimal query planning problem. In the set covering optimi-
zation problem the task is to find a set covering which uses
the fewest sets. We can map the set cover problem to our
query planning problem.

The MAX query, corresponding to the set cover problem, will
be max of all the items in the universe U at an incoherency
bound 1. For each set s 2 S we assume the existence of a DA
disseminating all the elements of s at an incoherency bound
of 1.

Further, let all data items have sumdiff value of 1. we can see
that cost of any subquery will be 1. Thus, cost of the client
query, which is sum of cost of its data-items, will be same
as the number of subsets required to get the set cover. It is
easy to see that if we can solve the query planning problem
optimally we can also solve the set cover problem optimally.
Thus, now we give greedy heuristics for the data-items selec-
tion problem.

To execute the query using a network of data aggregators,
subqueries are assigned to different DAs. Each sub query is
a query over a subset of query data items. For optimal plan-
ning ther is a need to minimize the sum of subquery execu-
tion costs. As we assign same incoherency bound to all the
subqueries (equals to the query incoherency bound as per
the need to minimize sum of subquery sumdiff values.

Thus use of greedy algorithm is given for solving the query
planning problem with different set of subquery selection
criteria ð. In the min-cost heuristic we select the subquery
having minimum subquery sumdiff per data item. For the
MAX query, subquery sumdiff is nothing but the sumdiff of
the most dynamic data item in the subquery. Thus, for the
max-gain heuristic, the gain of each subquery is calculated as

Thus for the additive queries with one difference the max-
gain algorithm works better than the min-cost algorithm but,
unlike in additive queries, in case of MAX queries perfor-
mance of min-cost algorithm is closer to that of the random
algorithm compared to the max-gain algorithm and can be
ensured that the most dynamic data item is a part of lower
cost subquery, leading to a better query plan.

VIII. CONCLUSION
This seminar presents an approach to minimize the number
of refreshes required to execute an incoherency bounded
continuous query. It is assumed the existence of a network
of data aggregators, where each DA is capable of dissemi-
nating a set of data items at their prespecified incoherency
bounds. An important measure for data dynamics in the form
of sumdiff is developed which, as we discussed in previously,
is a more appropriate measure compared to the widely used
standard deviation based measures. For optimal query ex-
ecution, the query is divided into data-items and evaluate
each subquery at a judiciously chosen data aggregator.

