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ABSTRACT To monitor the time varying data we required some queries and those queries are continuous queries which 
provides result for online decision making Typically a user desires to obtain the value of some aggregation 

function over distributed data items, for example, to know value of portfolio for a client; or the AVG of temperatures sensed 
by a set of sensors. In these queries a client specifies a coherency requirement as part of the query. This paper presents a 
low-cost, scalable technique to answer continuous aggregation queries using a network of aggregators of dynamic data 
items. In such a network of data aggregators, each data aggregator serves a set of data items at specific coherencies. Just 
as various fragments of a dynamic web-page are served by one or more nodes of a content distribution network (CDN) 
our technique involves decomposing a client query into sub-queries and executing sub-queries on judiciously chosen data 
aggregators with their individual sub-query incoherency bounds. Provide a technique for getting the optimal set of sub-
queries with their incoherency bounds which satisfies client query's coherency requirement with least number of refresh 
messages sent from aggregators to the client. For estimating the number of refresh messages, Build a query cost model 
which can be used to estimate the number of messages required to satisfy the client specified incoherency bound.

I.INTRODUCTION
A. Overview
The web is becoming a universal medium for information 
publication and use. Such information is often dynamic, al-
lowing users to employ it for online decision making. Data 
delivered over the internet is distributed and is increasingly 
being used for personalized experiences. Typically user de-
sires to obtain the value of some function over the distrib-
uted data items. Given the increasing number of applications 
that make the use of highly dynamic data, there is signifi-
cant interest in systems that can efficiently deliver relevant 
updates automatically. For this scenario, answering user que-
ries requires acquiring dynamic data values from distributed 
sources and aggregating those data values to satisfy user’s 
requirement. Because these queries involve aggregation of 
dynamic data items, query results must be refreshed continu-
ously so that users get the updated notifications of the data. 
These are long running queries which allow the data to be 
delivered to the user over fast changing data from distrib-
uted sources executed over data aggregators leading to sig-
nificant improvement in use of network and resources. 

Data Aggregators can be called as organizers involved in 
compiling information from detailed database on individuals 
and selling information to others. For online purpose where 
dynamic data is of prime importance, data aggregators can 
gather the information from designated websites and provid-
ing the data to the user. The process of extracting raw statisti-
cal information from the database or data repository, putting 
it all together to produce statistical output that can be used 
by the user and has relevance to statistical query it seeks to 
satisfy. Absolute difference in the value of data item at the 
data source and the value known to the client.

Continuous queries are used to monitor changes to time 
varying data and to provide results useful for online decision 
making. This paper,” Query planning for Continuous Que-
ries over a Network of data Aggregators”, presents a low-
cost, scalable technique to answer continuous aggregation 
queries using a content distribution network of dynamic data 
items. It saves the time and the user spending low cost. A 
continuous query cost model which can be used to estimate 
the number of messages required to satisfy the client speci-

fied incoherency bound and optimal query plan for continu-
ous aggregation queries.

II.  LITERATURE SURVEY
Web sites become popular, they’re increasingly vulnerable to 
the flash crowd problem, in which request load overwhelms 
some aspect of the site’s infrastructure, such as the front end 
Web server, network equipment, or bandwidth, or (in more 
advanced sites) the back-end transaction-processing infra-
structure. Our approach is based on the observation that 
serving Web content from a single location can present seri-
ous problems for site scalability, reliability, and performance. 
We thus devised a system to serve requests from a variable 
number of surrogate origin servers at the network edge. 
Running applications on a globally distributed network of 
computers provides many of the same advantages as simple 
content delivery: capacity on demand, cost-effective use of 
shared resources, ability to respond to users without com-
municating over long distances, and so on[3].

As Internet traffic continues to grow and web sites become 
increasingly complex, performance and scalability are major 
issues for web sites. Web sites are increasingly relying on 
dynamic content generation applications to provide website 
visitors with dynamic, interactive, and personalized experi-
ences. However, dynamic content generation comes at a cost 
- each request requires computation as well as communica-
tion across multiple components. To address these issues, 
several back end caching approaches have been proposed, 
including query result caching and fragment level caching.
The paper, presents an approach and an implementation of 
a dynamic proxy caching technique which combines the ben-
efits of both proxy-based and back end caching approaches.
The results of this implementation indicate that our tech-
nique is capable of providing order-of magnitude reductions 
in bandwidth and response times in real-world[2].

III. NETWORK OF DATA AGGREGATOR (DA)
A. Data Aggregator
The required data updates for query evaluation at a DA can 
be obtained either by sources pushing them continuously or 
the DA pulling them whenever required. In both these cases, 
it is desired that client’s coherency and fidelity requirements 
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are met with the minimum number of data value refresh mes-
sages. Thus efficiency of query evaluation at the DA is quanti-
fied in terms of the number of refreshes done for various data 
items involved in the queries executing at the DA. Reducing 
the number of refreshes reduces computational overheads 
at the DA, load on the data servers and network bandwidth. 
Since data sources have exact data values, we can expect 
that a push based approach can deliver the required bound-
ed incoherency with the given fidelity using a smaller number 
of refresh messages.

Fig 1 Query execution at data Aggregators

B.  Data incoherency
Data refresh from data sources to clients can be done using 
push- or pull-based mechanisms. In a push-based mecha-
nism data sources send update messages to clients on 
their own whereas in a pull based mechanism data sources 
send messages to the client only when the client makes a 
request. We assume the push based mechanism for data 
transfer between data sources and clients. For scalable han-
dling of push based data dissemination, network of data 
aggregators are proposed in the paper [5]. In such network 
of data aggregators, data refreshes occur from data sources 
to the clients through one or more data aggregators. In this 
paper, we assume that each data aggregator maintains its 
configured incoherency bounds for various data items. Data 
accuracy can be defined in terms of incoherency of a data 
item, defined as absolute difference between the value id 
data at the data source and value known to the client  of a 
data. Let v(t) denote the value of ith data item at the data 
source at a time t; and let value the data item known to 
the client be u(t). Then the data incoherency at the client is 
given by  lv(t)-u(t). 

1) Aggregate Queries and Their Execution : Consider a 
client query Q=50d1+200d2+150d3, where d1, d2, d3 are 
different data items with a required incoherency bound of 
$80. We want to execute this query over the data aggre-
gators to minimize the number of refreshes. For answering 
the multidata aggregation query, there are three options for 
the client to get the query results. First, the client may get 
the data items d1, d2, and d3 separately. The query inco-
herency bound can be divided among data items in various 
ways ensuring that query incoherency is below the incoher-
ency bound. Second, if a single DA can disseminate all three 
data items required to answer the client query, the DA can 
construct a composite data item corresponding to the client 
query  (dq= 50d1 + 200d2 + 150d3) and disseminate the 
result to the client so that the query incoherency bound is not 
violated. A third option is to divide the query into a number 
of sub queries and get their values from individual DAs. In 
that case, the client query result is obtained by combining 
the results of multiple sub queries since different data aggre-
gators disseminate different subsets of data items, no data 
aggregator may have all the data items required to execute 
the client query even if an aggregator can refresh all the data 
items, it may not be able to satisfy the query coherency re-
quirements. In such cases the query has to be executed with 
data from multiple aggregators.

Fig 2 (A)Single data Aggregator  (B)Network of Data Ag-
gregators

3)Weighted Additive Aggregation Query : Value of a continu-
ous weighted additive aggregation query, at time t, can be 
calculated as: Vq(t)=∑ (Vqi(t)*Wqi). Where Vq is the value of a 
client query q involving nq data items with the weight of the 
ith data item being wqi,1≤i≤nq. Suppose the result for the 
query given by (1) needs to be continuously provided to a 
user at the query incoherency bound Cq.  Then, the dissemi-
nation network has to ensure that- |∑ (Vqi(t)-Uqi(t))*Wqi|≤Cq 
Whenever data values at sources change such that query in-
coherency bound is violated, the updated value should be 
refreshed to the client. If the network of aggregators can en-
sure that the ith data item has incoherency bound Cqi, then 
the following condition ensures that the query incoherency 
bound Cq is satisfied.

The problem of choosing sub queries while minimizing query 
execution cost is an NP-hard problem. Efficient algorithms 
are given to choose the set of sub queries and their corre-
sponding incoherency bounds for a given client query. For 
solving the above problem of optimally dividing the client 
query into sub queries, we first need a method to estimate 
the query execution cost for various alternative options. As 
we divide the client query into sub queries such that each 
sub query gets executed at different aggregator nodes, the 
query execution cost (i.e., number of refreshes) is the sum of 
the execution costs of its constituent sub queries.

Thus query Q can be divided in two alternative ways:

Plan  1.  Result of sub query 50d1+150d3 is served by a1, 
whereas value of d2 is served by a2.

Plan  2. Value of d3 is served by a1, whereas result of Sub 
query 50d1 + 200d2 is served by a2.

IV DATA DISSEMINATION COST MODEL
Here the model is presented to estimate the number of re-
freshes required to disseminate a data item while maintaining 
a certain incoherency bound. There are two primary factors 
affecting the number of messages that are needed to main-
tain the coherency requirement:  1) the coherency require-
ment itself and 2) dynamics of the data.

                                 
                                           
Fig.3:Data Dissemination of Multiple Data item

A. Incoherency Bound Model
Incoherency bound model is used for estimating depend-
ency of data dissemination cost over the desired incoherency 
bound. As per this model,  the number of data refreshes is in-
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versely proportional to the square of the incoherency bound 
(1/C2).. Data dissemination cost 1/C2

B.Data Dynamics Model
There are two possible options to model data dynamics. As 
a first option, the data dynamics can be quantified based on 
standard deviation of the data item values. It is calculated by 
summing up the products of the deviations of the data item 
values from their mean that varies between -1 and 1 with 
higher (absolute) values signifying that data points can be 
considered linear. 

As a second option we considered Fast Fourier Transform 
(FFT) which is used in the digital signal processing domain to 
characterize a digital signal. FFT captures number of changes 
in data value, amount of changes, and their timings. 

Specifically, the cost of data dissemination for a data item will 
be proportional to data sumdiff defined as

Rs= |Si-Si-1|                                   (4)

C.Combining Data Dissemination Models
Number of refresh messages is proportional to data sumdiff 
Rs and inversely proportional to square of the incoherency 
bound (C2). Further, we can see that we need not disseminate 
any message when either data value is not changing (Rs =0) 
or incoherency bound is unlimited (1/C2 ). Thus, for a given 
data item S, disseminated with an incoherency bound C, the 
data dissemination cost is proportional to Rs/C2. In the next 
section, we use this data dissemination cost model for devel-
oping cost model for additive aggregation queries.

D. Cost Model For Additive Aggregation Query
Consider an additive query over two data items P and Q with 
weights wp and wq, respectively; Number of pushes versus 
data sumdiff estimate its dissemination cost. If data items are 
disseminated separately, the query sumdiff will be

Instead, if the aggregator uses the information that client is 
interested in a query over P and Q (rather than their indi-
vidual values), it creates and pushes a composite data item 
(WPp+WQq) then the query sumdiff will be

Where Rquery is clearly less than or equal compared to Rda-
ta. Thus, we need to estimate the sumdiff of an aggregation 
query given the sumdiff values of individual data items (i.e., 
Rp and Rq). Only data aggregators are in a position to calcu-
late Rquery as different data items may be disseminated from 
different sources.

V. QUERY PLANNING FOR WEIGHTED ADDITIVE AGGRE-
GATION QUERIES
For executing an incoherency bounded continuous query, a 
query plan is required. The query planning problem can be 
stated as:

Inputs:1. A network of data aggregators in the form of a rela-
tion f (A; D;C)specifying the N data aggregators ak €A(1 ≤k 
≤N), set Dk is subset of D of data items disseminated by the 
data aggregator ak, and incoherency bound tkj which the ag-
gregator ak can ensure for each data item dkj €Dk.

2. Client query q and its incoherency bound Cq. An additive 
aggregation query q can be represented as∑ wqi dqi, where 
wqi is the weight of the data item dqi for 1 ≤i≤ nq.

Outputs:
1. qk for 1≤ k≤ N, i.e., sub query for each data aggregator ak.

2. Cqk for 1≤ k ≤N, i.e., incoherency bounds for all the sub 

queries.

Thus, to get a query plan we need to perform following tasks:

1.  Determining sub queries: For the client query q get sub 
queries qks for each data aggregator.

2.  Dividing incoherency bound: Divide the query incoher-
ency bound Cq among sub queries to get Cqk s.

For optimal query planning, above tasks are to be performed 
with the following objective and constraints: Optimization 
objective. Number of refresh messages is minimized. , as it 
is proved that, for a sub query qk, the estimated number of 
refresh messages is given by

-Rqk/C2qk, where Rqk is the sumdiff of the sub query qk; Cqk 
is the incoherency bound assigned to it and k, the propor-
tionality factor, is the same for all sub queries of a given query 
q. Thus, total number of refresh messages is estimated as

Hence, Zq needs to be minimized for minimizing the number 
of refreshes.

A.Greedy Heuristics for Deriving the Data-items 
Here is given  the outline of greedy algorithm for deriving 
data-items. First, we get a set of maximal data-items (Mq) 
corresponding to all the data aggregators in the network.

The maximal subquery for a data aggregator is defined as 
the largest part of the query which can be disseminated by 
the DA (i.e., the maximal subquery has all the query data 
items which the DA can disseminate). For example, consider 
a client query 50d1 + 200d2 +150d3. For the data aggrega-
tors a1 and a2 given in Example 1, the maximal subquery for 
a1 will be m1=50d1 + 150d3, whereas for a2 it will be m2 
= 50d1 + 200d2. For the given client query (q) and relation 
consisting of data aggregators, data items, and data incoher-
ency bounds (f(A; D;C)) maximal data-items can be obtained 
for each data aggregator by forming subquery involving all 
data items in the intersection of query data items and those 
being disseminated by the DA. This operation can be per-
formed in O(|q|:max|Dk|) where|q|is number of data items in 
the query, max|Dk| is the maximum number of data items dis-
seminated by any DA. For each subquery m €Mq, its sumdiff 
Rm can be calculated.

1) Query Plan with Pre-decided Incoherency Bound Allo-
cation : For the given client query (q) and mapping between 
data aggregators and the corresponding {data-item, data in-
coherency bound} pairs (f: D_(S, C)) maximal sub-queries can 
be obtained or each data aggregator. 

Let A be the set of such maximal data-items. In this set, each 
query a €A can be disseminated by a designated data ag-
gregator at the assigned incoherency bound. For each sub-
query a €A, its Sumdiff Ra is calculated using Equation. 

Using the set A and sub-query sumdiffs, we use the algorithm 
to get the set of sub-queries minimizing the query cost. 

Each sub-query a €A is represented by the set of data items 
covered by it. As we need to minimize the query cost, a data-
item with minimum cost per data item is chosen in each itera-
tion of the algorithm i.e., criteria minimize (Ra/Ca2|a|). 

All data items covered by the selected data-item are re-
moved from all the remaining data-item in A before perform-
ing the next iteration.
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THE GREEDY ALGORITHM FOR QUERY PLAN SELECTION
Result  Ø
While A ≠ Ø
Choose a data-item a  A with criteria ψ
Result Result υ a
A  A-{a}
For each data element e  a
For each b  A
b  b-{e}
If b = Ø
A  A-{b}
Else
Calculate sumdiff for modified b
Return Result
Fig.4.Greedy Algorithm.

VII. QUERY PLAN
A. Overheads of Query Plan
Here the time overheads for various query planning opera-
tions is reported. We measured these costs by varying the 
number of data items being disseminated by the network, 
between 40 and 200.

For various sumdiff-based algorithms, we need to maintain 
the sumdiff values of various data items (proportional to the 
number of data items being disseminated) and the correla-
tion measure for each pair of data items (proportional to the 
square of the number of data items), in addition to the query 
dependent planning cost. 

Higher cost of query planning, for the sumdiff-based algo-
rithms, is justified by the savings we achieve in terms of num-
ber of messages for the whole duration of the continuous 
query. The query planning cost of random and minCost is 
higher as they require more iterations of the algorithm (i.e., 
more data-items) compared to the maxGain algorithm.

A. Optimal Query Planning Problem Is NP-Hard
Optimal query planning problem for MAX queries is NPhard. 
This can be proved by mapping the set cover problem to this 
optimal query planning problem. In the set covering optimi-
zation problem the task is to find a set covering which uses 
the fewest sets. We can map the set cover problem to our 
query planning problem.

The MAX query, corresponding to the set cover problem, will 
be max of all the items in the universe U at an incoherency 
bound 1. For each set s 2 S we assume the existence of a DA 
disseminating all the elements of s at an incoherency bound 
of 1. 

Further, let all data items have sumdiff value of 1. we can see 
that cost of any subquery will be 1. Thus, cost of the client 
query, which is sum of cost of its data-items, will be same 
as the number of subsets required to get the set cover. It is 
easy to see that if we can solve the query planning problem 
optimally we can also solve the set cover problem optimally. 
Thus, now we give greedy heuristics for the data-items selec-
tion problem.

To execute the query using a network of data aggregators, 
subqueries are assigned to different DAs. Each sub query is 
a query over a subset of query data items. For optimal plan-
ning ther is  a need to minimize the sum of subquery execu-
tion costs. As we assign same incoherency bound to all the 
subqueries (equals to the query incoherency bound as per 
the  need to minimize sum of subquery sumdiff values.

Thus use of greedy algorithm is given for solving the query 
planning problem with different set of subquery selection 
criteria ð. In the min-cost heuristic we select the subquery 
having minimum subquery sumdiff per data item. For the 
MAX query, subquery sumdiff is nothing but the sumdiff of 
the most dynamic data item in the subquery. Thus, for the 
max-gain heuristic, the gain of each subquery is calculated as

Thus for the additive queries with one difference the max-
gain algorithm works better than the min-cost algorithm but, 
unlike in additive queries, in case of MAX queries perfor-
mance of min-cost algorithm is closer to that of the random 
algorithm compared to the max-gain algorithm and can be 
ensured that the most dynamic data item is a part of lower 
cost subquery, leading to a better query plan.

VIII. CONCLUSION
This seminar presents an approach to minimize the number 
of refreshes required to execute an incoherency bounded 
continuous query. It is assumed the existence of a network 
of data aggregators, where each DA is capable of dissemi-
nating a set of data items at their prespecified  incoherency 
bounds. An important measure for data dynamics in the form 
of sumdiff is developed which, as we discussed in previously, 
is a more appropriate measure compared to the widely used 
standard deviation based measures. For optimal query ex-
ecution, the query is divided into data-items and evaluate 
each subquery at a judiciously chosen data aggregator.


