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ABSTRACT Cryptographic techniques, such as encipherment, digital signatures, key management and secret sharing 
schemes, are important building blocks in the implementation of all security services. In situations where 

there is not complete trust between sender and receiver, something more than authentication is needed. The most attrac-
tive solution to this problem is the digital signature. The digital signature is analogous to the handwritten signature. A hash 
code of a message is created using SHA-1. This message digest is encrypted using DSS or RSA with the sender's private key 
and included with the message. In this paper we present a brief account on RSA signature and some possible attacks on it.

1. Integer Factorization
The problem of integer factorization is one of the oldest in 
number theory and the advents of computers have stimu-
lated considerable progress in recent years. However, the se-
curity of many cryptographic techniques depends upon the 
intractability of the integer factorization problem. A partial 
list of such schemes includes the RSA public-key encryption 
scheme and the RSA signature scheme. This section focuses 
on the knowledge on algorithms for the integer factorization 
problem.

Definition: The integer factorization problem is the following: 
given a positive integer n, find its prime factorization; i.e., 
write n = p1

e1 p2
e2 … pk

ek where the pi are pair wise distinct 
primes and each ei > 1.

This problem is believed to be hard for general n when n 
is large. Some ingenious methods have been devised in an 
attempt to factorize large composite numbers n. The three 
methods that are most effective on very large numbers are 
the quadratic sieve, the elliptic curve method and the num-
ber field sieve. Other well-known methods that were precur-
sors include Pollard’s rho-method and p - 1 method, Wil-
liams’s p + 1 method, the continued fraction algorithm, and 
of course, trial division.

2. The RSA problem
The intractability of the RSA problem forms the basis for the 
security of the RSA public-key encryption scheme and the 
RSA signature scheme.

Definition: The RSA problem is the following: given a positive 
integer n that is a product of two distinct odd primes p and q, 
a positive integer e such that gcd(e, (p - 1)(q - 1)) = 1, and an 
integer c, find an integer m such that me ºC (mod n).

Clearly the RSA problem is no more difficult then factoriza-
tion, since if p and q can be found then it is simple to find m.

3. RSA Publickey Cryptosystem
The RSA public-key cryptosystem was introduced in 1978, 
and may be used for both secrecy and digital signatures. The 
cryptosystem works in Zn, where n is the product of two large 
primes p and q, and its security is based on the difficulty of 
factoring n, that is, the integer factorization problem.

To use the RSA public-key cryptosystem, a user A first gener-
ates their public and secret keys by
(i) Generating two large distinct primes p and q.
(ii) (ii) Computing n = pq and f(n) = (p - 1)(q - 1), where f(n) 

is Euler Totient Function.

(iii) Choosing a random integer e such that 0 < e < f(n), and 
gcd(e, f(n)) = 1,

(iv) Using the Euclidean Algorithm to compute the unique 
integer d, where 0 < d < f(n), such that ed º 1 (mod f(n)), 
and

(v) Publishing the pair (n, e) as the public key, and keeping d 
as the private key.

RSA is an example of block cipher, that is, a message is en-
crypted by being broken down into blocks (or strings) of a 
fixed length, and each block is encrypted individually. The 
plaintext and the ciphertext space are P = C = Zn. To encrypt 
a message block m for user A, a user B

(i) Obtains A’s authentic public key (n, e),
(ii) Represents the message m as an integer in the range 0, 

…, (n – 1),
(iii) Computes the ciphertext EK(m) = c = me mod n, and
(iv) transmits the ciphertext c to user A.

To decrypt the ciphertext c, user A computes Dk(c) = cd = m 
mod n.

RSA has the property that for any two distinct messages m1 
and m2 with ciphertexts c1 and c2 respectively, the ciphertext 
of m = m1 . m2 mod n is

c ≡ me ≡ (m1 . m2)
e ≡ m1

em2
e ≡ c1 . c2 (mod n).

This is often referred to as the homomorphic property of RSA.

4. RSA Signature
The RSA public-key cryptosystem can be used to provide 
digital signatures by reversing the roles of encryption and 
decryption as follows:

A user A also generates their public and private keys exactly 
as in the RSA publickey cryptosystem. The set of users of 
signatures also need to agree on a hash function h. Then to 
generate a signature of a message m, user A

(i) Computes M = h(m),
(ii) Computes s = Md mod n, and
(iii) Outputs s as the signature of m.

To verify the signature, a user B
(i) Obtains A’s authentic public key (n, e),
(ii)  Verifies that s ≤ n; if not, then reject the signature
(iii)  Computes M/ = se mod n,
(iv)  Accepts the signature s if and only if M/ = M.
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A. The RSA signature with message recovery

A user A also generates their public and private keys exactly 
as in the RSA publickey cryptosystem. The set of users of sig-
natures agree on a redundancy function R. Then to generate 
a signature of a message m, user A

(i) Computes M = R(m),
(ii) Computes s = Md mod n, and
(iii)  Outputs s as the signature of m.

To verify the signature, a user B
(i) Obtains A’s authentic public key (n, e),
(ii) Computes M/ = se mod n,
(iii) Verifies that M/ has the required redundancy, and
(iv) Recovers the message m = R-1(M/).

Note that due to the homomorphic property of RSA, for any 
two distinct message m1 and m2 with corresponding signa-
tures s1 and s2 respectively, the signature of m = m1 . m2 
mod n is

s = (m1 . m2)
d ≡ m1

d . m2
d ≡ s1 . s2 (mod n).

In particular, for any message m1 with signature s1, the signa-
ture of m = -m1 mod n is s = -s1 mod n. It is important, there-
fore, that the redundancy function R is not multiplicative, that 
is, R(m1 . m2) ≠ R(m1) . R(m2).

5. Possible Attacks on RSA Signatures
The security of RSA signatures is based on the intractability 
of the integer factorization problem. RSA can be used as the 
basis of digital signatures with and without message recov-
ery. Three possible attacks on the RSA signature scheme are 
as follows:

5.1. Factorization
If an adversary is able to factor the public modulus n of some 
entity A, then the adversary can compute f(n) and then, using 
the extended Euclidean algorithm, deduce the private key d 
from f(n) and public exponent e by solving ed ≡ 1 (mod f(n)). 
This constitutes a total break of the system. To guard against 
this, one must select p and q so that factoring n is a compu-
tationally infeasible task.

A lot of algorithm has been proposed regarding factoriza-
tion, the Pollard rho algorithm [7], and the Pollard (p-1) algo-
rithm [8], Brent’s method [9], are probabilistic, and may not 
finish, even for small values of N, but Trial division algorithm 
and proposed method can finish all trivial and nontrivial val-
ues of N, shown in Table 1. This method is not probabilistic. 
To break RSA in to two prime numbers we should have the 
product of that prime numbers is equal to N. Factorization of 
N is very difficult to find that prime number. MFF can factors 
of N, which is P and Q, are its respective prime factors. Vari-
ous steps involved in the method are as follows:

1.  Let N = P*Q.
2.  Compute X =ceil (sqrt (N)).
3.  Compute Y =sqrt (X2 – N).
4.  If Y is integer
5.  Compute P =X – Y and Q =X + Y.
 Stop.
6.  Else X = X +1, X+ 2,…. , X + 2*X, .., X+N.
7.  Continue step 3 to 6, till Y is integer.

Example 1:
Let N=95
Decimal number = 2
Number of bits = 7
Let factors = P, Q
Compute Xn =10
Compute Y = 2.236 (is not integer number)
Go to step six.
Xn =11

Y = 5.09 (is not integer number)
Go to step six
X = 12
Y = 7 (is an integer number)
P = 5
Q = 19

Example 2:
Let N=99400891
Decimal number = 8
Number of Bits = 28
Compute Xn = 9970
Compute Y= 3
P = 9967
Q = 9973

Example 3:
Let N= 2320869986411928544793
Decimal number = 22
Number of Bits = 73
Let factors = P, Q
Compute X = 48175408524
Compute Y = 219488.97 (is not integer number)
Go to step six
X = X + 1, …, X + 17073029192103
X = 17121204600627
Y = 17121136822844
P = 67777783
Q = 34242341423471

5.2. Existential forgery
The basic idea behind RSA signatures is to compute s = Md 
(mod n) where M is (some function of) the message. This 
means that an adversary can choose an arbitrary s* and com-
pute m* = (s*)e (mod n) and claim s* is a valid signature on 
m*.

This is one reason why RSA signatures are always either of 
the form

(a)  s = (h(m))d (mod n), where h is a one-way collision resist-
ance hash function, giving a signature with appendix, or

(b)  s = (R(m))d (mod n), where R is a redundancy-adding func-
tion, giving a signature with message recovery for a mes-
sage m of limited length.

5.3. Multiplicative property of RSA
The RSA signature scheme (as well as the encryption scheme) 
has the following multiplicative property, sometimes referred 
to as the homomorphic property. If s1 = m1

d mod n and s2 = 
m2

d mod n are signatures on messages m1 and m2, respec-
tively (or, more properly, on messages with redundancy add-
ed), then s = s1s2 mod n has the property that s = (m1m2)

d mod 
n. If m = m1m2 has the proper redundancy, then s will be valid 
signature for it. Hence, it is important that the redundancy 
function R is not multiplicative, i.e., R(m1 m2) ≠ R(m1) R(m2). 
Alternatively this homomorphism weakness of RSA can be 
eliminated by applying some one-way hash-function h to m 
before signing m, as long as h is not multiplicative.

Conclusion
The security of RSA signatures is based on the intractability 
of the integer factorization problem. RSA can be used as the 
basis of digital signatures with and without message recov-
ery. We have described general types of attack against RSA 
signature. For RSA signatures the homomorphism property 
could only be used by a forger to forge a signature.
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