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ABSTRACT In this paper, we proposed a new technique of differential quadrature method to find  numerical solutions of 
the convection-diffusion equation with appropriate initial and boundary conditions. The present technique 

is based on the Bernstein polynomial formula, which is used to construct the weighted coefficients matrices of differen-
tial quadrature method. To demonstrate its usefulness and accuracy, the new proposed method is applied to three test 
problems, involving different linearity. The results show that the new method is more accurate and convergent than other 
numerical methods in literature.

1- Introduction
The study of the general properties of the convection-diffu-
sion equation has attracted the attention of scientific commu-
nity due to its applications in various fields such as petroleum 
reservoir simulation, subsurface contaminant remediation, 
heat conduction, shock waves, acoustic waves,  gas dynam-
ics, elasticity, etc[3,14,19]. The studies conducted for solving  
the convection-diffusion equation in the last half century are 
still in an active area of research to develop some better nu-
merical methods to approximate its solution. Many research-
ers solve different types of convection-diffusion equation by 
different numerical methods[1,3,9,11,13,12,13,16,-

30,31,32]. The best oldest known approximation techniques 
are the finite difference (FD) and finite element (FE) methods. 
A relatively new numerical technique is the differential quad-
rature method (DQM). Despite being a domain discretization 
method, the differential quadrature method gives accurate 
results using less discretization points than all the above 
mentioned methods (FD&FE). DQM depends on the idea of 
integral quadrature and approximate a spatial partial deriva-
tives as a linear weighted sum of all functional values of the 
solution at all mesh points [19]. This method was proposed 
by Bellman and Casti[5] in 1971. One of important keys to 
DQM lies in the determination of weighting coefficients for 
the discretization of a spatial  derivative of any order, where it 
play the important role in the accuracy of numerical solutions. 
Initially, Bellman et al.[6] (1972), suggested two methods to 
determine the weighting coefficients of the first order deriva-
tive. The first method solves an algebraic equation system. 
The second use a simple algebraic formulation, but with the 
coordinates of grid points chosen as the roots of the Leg-
endre polynomial. Quan and Chang[22]  (1989a) and Shu 
and Richards[27] (1992) derived a recursive formula to obtain 
these coefficients directly and irrespective of the number and 
positions of the sampling points. In their approach, they used 
the Lagrange polynomials as the trial functions and found 
a simple recurrence formula for the weighting coefficients. 
Bert et al.[7] (1993) and Striz et al.[29] (1995) developed the 
differential quadrature method, which uses harmonic func-
tions instead of polynomial as test function in the quadrature 
method to handle periodic problems efficiently, and also cir-
cumvented the limitation for the number of grid point in the 
conventional DQM  based on polynomial test function. Their 
study shows that the proper test functions are essential for 
the computational efficiency and reliability of the DQM. Shu 
et al.[25] (2001) presented a numerical study of natural con-
vection in an eccentric annulus between a square outer cylin-
der and a circular inner cylinder using DQM, by using Fourier 
series expansion as the trial functions to compute weighting 

coefficients. Krowiak[18] (2008) studied the  methods that 
based on the differential quadrature in vibration analysis of 
plates, and using the spline functions as the trial functions 
to compute weighting coefficients. Korkmaz et al.[17] (2011) 
used the quartic B-spline differential quadrature method, 
and applied it on  the one-dimensional Burger’s equation, by 
using the quartic B-spline functions as the trial functions to 
compute weighting coefficients. Meral[19] (2013) found the 
differential quadrature solution of heat- and mass-transfer 
equations to show the applicability of DQM space- Runge 
Kutta method time procedure for the one- and two-dimen-
sional problems by using the Lagrange  polynomials as the 
trial functions to compute weighting coefficients. Jiwari[14] 
(2013) used a numerical scheme based on weighted average 
differential quadrature method for the numerical solution of 
Burgers’ equation, and using the Lagrange  polynomials as 
the trial functions to compute weighting coefficients. 

A lot of researchers cared in their studies how to determine 
the weighting coefficients of the differential quadrature 
method, after reading of a lot of research and studies about 
the differential quadrature method. We noticed that Bern-
stein polynomials are incredibly useful mathematical tools 
as they are simply defined. They can be calculated quickly 
on computer systems and represent a tremendous variety of 
functions. They can be differentiated and integrated easily, 
and can be pieced together to form spline curves that can 
approximate any function to any accuracy desired. One of 
important properties to Bernstein polynomials are surely con-
vergence. Depending on these reasons and according to our 
humble knowledge that the Bernstein polynomials not yet 
used to calculate weighting coefficients, the matter that led 
us to use it in this study.

In this work, we suggest Bernstein polynomials as test func-
tions to compute the weighting coefficients of the spatial 
derivatives, in order to introduce a new development to the 
differential quadrature method that is called Bernstein differ-
ential quadrature method (BDQM). Using the BDQM for solv-
ing convection-diffusion problems excellent numerical results 
are obtained. Compared with other methods; the new meth-
od with a few grid points appears that it has better conver-
gence and accuracy than the other methods in [4,11,12,13].

2- Differential quadrature method 
The differential quadrature is a numerical technique used to 
solve the initial and boundary value problems. This method 
was proposed by Bellman and Casti[5] in (1971). The DQM 
is based on the idea that the partial derivative of a field vari-
able at the  discrete points in the computational domain is 
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approximated by a weighted linear sum of the values of the 
field variable along the line that passes though that point, 
which is parallel with coordinate direction of the derivative 
as following [3]:

where  are the discrete points in the variable,  is the  order 
derivative of the function,  are the function values at these 
points, and  are the weighting coefficients for the  order de-
rivative of the function with respect to  and  is the number 
of the grid points. There are two key points in the successful 
application of the DQM: how the weighting coefficients are 
determined and how the grid points are selected[20]. Many 
researchers have obtained weighting coefficients implicitly 
or explicitly using various test functions[15,17,23,25]. Quan 
and Chang[22] (1989a) and Shu and Richards[27] (1992), em-
ployed a set of Lagrange polynomials as the test function to 
determine the weighting coefficients of derivatives as.

And, the weighted coefficient of the second order derivative 
can be obtained as:

We can obtain formulas for higher order derivatives by using 
the higher order weighting coefficients, which are expressed  
to avoid confusion.

with the same approach, one can derive quadrature along of 
multi-variables functions.

3- Bernstein differential quadrature method (BDQM)
A Bernstein polynomial, named after Sergei Natanovich 
Bernstein, is a polynomial in the Bernstein form, that is a lin-
ear combination of  Bernstein basis polynomials. The Bern-
stein basis polynomials of -degree are defined on the interval  
by Singh et al.[28]:

The general form of Bernstein polynomials of -degree that 
used to solve differential equation[8,21] are defined on the 
interval  as:

were binomial coefficients are given by :

There are n+1,n^th -degree Bernstein polynomials. For 
mathematical convenience, we usually set, Bk,n(x)=0 , if  k<0 
or k>n. These polynomials are quite  easy to write down the 
coefficients that can  be obtained from Pascal’s triangle. It  
can easily be shown that each of the Bernstein polynomials is 
positive and also the sum of all the Bernstein polynomials is 
unity for all real x∈[0,1] i.e

The Bernstein polynomials can be written to any interval as 
following[28]:

were f(k/n) is arbitrary function, for k=0,1,…,n,    n≥1. Similar 
to Lagrange differential quadrature method LDQM to de-
termined weighting coefficients, we can derive the explicit 
formulation to compute the weighting coefficients Aik^(1)  
by using Bernstein polynomial as a test functions, which are 
listed below:

were is length interval [0,L] and

The weighted coefficients of the second order derivative by 
using Bernstein polynomial as a test functions can be ob-
tained as

The same technique used in the equation (4), can be ob-
tained from weighting coefficients A∈ik

(m). In this work, we can 
calculate the mth-order spatial derivatives A∈ik

(m)  with respect 
to χ by using Bernstein polynomials.

4- Numerical examples and discussion  
In this section , we apply BDQM on three test problems to 
demonstrate the efficiency of the BDQM. These examples 
are chosen such that their exact solutions are known. 

Problem 1. (Djidjeli et al.[13])
Consider the  unsteady state one-dimensional convection-
diffusion equation:

where u(x,t) is a transported variable , βx is arbitrary constant 
which show the speed of convection and the diffusion coef-
ficient  is positive.
We can approximate the partial derivatives with respect to 
spatial variable  of the one-dimension unsteady state con-
vection-diffusion equation (11) by  using BDQM to obtain the 
system of ordinary differential equations as:

where  and  are the weighting coefficients of the first and 
second derivatives with respect to and calculating by Equs.
(9) and (10). Approximating the first-order derivatives with 
respect to the temporal variable by using the forwarded dif-
ferences and then arranging the terms of Equation (12), we 
obtain the system of algebraic equations as:

Equ. (11) has the initial condition:

where

and the boundary conditions
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The exact solution is given as:

In this problem, we take take  αx=βx=1,L=1, a=1,b=0.1 and 
∆t=0.00001 and use equally space grid points. Table 1 are 
shows the errors obtained from solving problem 1 by using 
LDQM and BDQM at (t=0.01 and 1) and x∈[0,1] for different 
values of h=1/(N-1). Fig. 1 is clarify a comparison between  
exact solution and numerical solutions  of the problem 1. The 
results confirm that the BDQM has a higher accuracy, good 
convergence compare with LDQM.

Table 1. Errors obtained for problem 1 with 

                   
h

    Max error of  LDQM     Max error of  BDQM
t=0.01   CPU    t=1         CPU t=0.01 CPU     t=1  CPU

0.25 5.537E-
07 0.469 1.000E-

03 18.99 4.171E-
07  0.421 9.974E-

04 18.86

0.17 6.643E-
07 0.509 9.999E-

04 22.43 1.345E-
07  0.496 9.663E-

04 21.71

0.125 7.275E-
07 0.611 3.464E-

03 29.07 6.456E-
08  0.567 2.671E-

03 28.51

0.1 7.684E-
07 0.689 8.949E-

03 43.94 8.087E-
08  0.645 3.735E-

03 43.40

We choose the arbitrary function and  is the arbitrary con-
stant. In this problem, we will take  at the number of  grid 
points  respectively. Notice that in the next examples, we 
chosen the same above arbitrary function with different val-
ues of .

Fig.1 Exact and approximate solutions of the problem 1 
with,

Problem 2 (Dehghan and Mohebbi[12])
Consider the  unsteady state two-dimensional convection-
diffusion equation:

where  is a transported variable ,  and  are arbitrary constants 
which show the speed of convection and the diffusion coef-
ficients  and  are positive constants. We can approximate the 
partial derivatives with respect to spatial variable  of the two-
dimension unsteady state convection-diffusion equation (17) 
by  using BDQM to obtain the system of ordinary differential 
equations as:

where  are the weighting coefficients of the first and second 
spatial derivatives with respect to  and  and calculating by 
Equs. (9) and (10). By approximating the first-order deriva-
tives with respect to the temporal variable by using the for-
ward differences and then arranging the terms of Equation 
(18), we obtain the system of algebraic equations as:

The initial condition of Equation (17) has the following form:  

                           
where

and the boundary conditions are given by:

The exact solution is given as:

In this problem, we take  ,  respectively,   , and use equally 
spaced grid points. Tables 2 and 3 are shows  the errors ob-
tained from solving problem 2 by using LDQM and BDQM at  
and  for different values of . Figs.2 and 3 are clarify a com-
parisons between  exact solution and numerical solutions for 
and respectively. The results confirm that the BDQM more  
accuracy and less CPU time than the LDQM.

Table 2  Errors obtained for problem 2 with  
  h Max of LDQM CPU Max  of  BDQM CPU
0.25 2.912711E-08 0.514 3.3.735268E-13 0.508
0.17 2.108340E-08 0.615 4.105996E-18 0.607
0.125 1.371521E-08 0.770 5.272405E-15 0.763
0.1 7.726773E-09 1.105 5.703941E-15 1.086

Table 3  Errors obtained for problem 2 with 
  h  Maxof LDQM CPU Max  of  BDQM CPU
0.25 2.572117E-06 0.509 3.7.073172E-09 0.503
0.17 1.379575E-05 0.619 1.895764E-08 0.610
0.125 3.223357E-05 0.772 3.894741E-08 0.757
0.1 5.348801E-05 1.047 1.094325E-07 1.015

In this problem, we take  for Table 2. and  for Table 3. respec-
tively at the number of grid points

Fig. 2 Exact and approximate solutions of the problem 2 
with,
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Fig. 3 Exact and approximate solutions of the problem 2 
with, , and
Problem 3 (Al-Saif and Al-kanani[4])
Consider  the two-dimensional  Burger’s Equation:

where  are the velocity components to be determined, is 
constant and  is the Reynolds number,  We can approximate 
the partial derivatives with respect to spatial variable of the 
two dimensional  Burger’s Equation  (23) and (24) by  using 
BDQM to obtain the system of ordinary differential equations 
as:

where  are the weighting coefficients of the first and sec-
ond spatial derivatives with respect to  and  and calculat-
ing by Equs. (9) and (10). By approximating the first-order 
derivatives with respect to the temporal variable by using 
the forwarded differences and then arranging the terms of 

Equations (25) and (26), we obtain the system of algebraic 
equations as:

In this problem, we take ,  and the initial conditions of Equa-
tions (25) and (26) have the following form:

The boundary conditions can be achieved easily from (30) 
by using  For the above problem, we found numerical solu-
tions for  and  and use equally spaced grid points. Tables 4 
and 5 shows the errors obtained in solving problem 3 with 
the BDQM and LDQM at   and  for different values of  Fig. 4 
is clarify a comparison between  exact solution and numeri-
cal solutions of the problem 3. The results showed that the  
BDQM has a high accuracy, good convergence and less CPU 
time comparing with the  LDQM.

Table 4. Error obtained by LDQM and BDQM for problem 3 with and  

        Max of  u Max  of  v
  h LDQM CPU   BDQM CPU    LDQM   CPU BDQM CPU
0.25 1.943390E-05 0.098 1.877131E-05  0.093 1.943416E-05  0.100 1.877144E-05 0.099
0.17 3.109294E-05 0.106 2.859741E-05  0.096 3.109260E-05  0.110 2.859693E-05 0.102
0.125 4.022089E-05 0.122 3.450607E-05  0.120 4.022089E-05  0.122 3.450572E-05 0.118
0.1 4.733133E-05 0.151 3.707231E-05  0.132 4.733010E-05  0.137 3.707123E-05 0.128

Table 5. Error obtained by LDQM and BDQM for problem 3 with  and  

            h Maxof  u Max  of  v
LDQM CPU BDQM  CPU LDQM CPU BDQM CPU

0.25  1.637199E-03   0.475  1.001154E-03  0.456 1.637175E-03 0.487 1.001153E-03 0.477
0.17  2.612820E-03 0.558  9.961354E-04  0.543 2.612838E-03 0.554 9.961241E-04 0.547
0.125  3.405341E-03 0.703  9.925080E-04  0.677 3.405345E-03 0.709 9.925192E-04 0.698
0.1  4.022784E-03 0.947  9.934846E-04  0.945 4.021884E-03 0.978 9.934885E-04 0.968
In this problem, we take  and  respectively at the number of grid points

Fig. 4  Exact and approximate solutions of the problem 3 
with, t=0.01 andt=0.0001. 

5- Comparison with the other methods
We compare the numerical results of BDQM for problems 1, 
2 and 3 with the results of other numerical methods such as 
LDQM, compactly supported radial basis function (RBF)[13], 
High-order compact boundary value method (HOCBVM)[12], 
Radial basis function based meshless method (RBFBMM)[11], 
and Alternating direction implicit formulation of the differen-
tial quadrature method (ADI-DQM)[3,4].  The error measure-
ments resulted from the BDQM is more accurate than the 
methods LDQM, RBF[13], HOCBVM[12], RBFBMM[11] and 
ADI-DQM[3,4]. Moreover, the number of grid points by using 
BDQM and LDQM are less than the other methods.

Table 6. Comparison of the numerical results of the prob-
lem 1  for different methods at
Method Number grid points Max of u
BDQM 3.510230E-03
LDQM 8.278487E-03
RBF 4.413E-01

Table 7. Comparison of the numerical results of the prob-
lem 2 for different methods at  and  
Method Number grid points Maxof u
BDQM 5.703941E-15
ADI-DQM[3]  4.110175E-13
LDQM 7.726773E-09
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HOCBVM 9.4696E-04
RBFBMM 4.97E-02

Table 8. Comparison of the numerical results of the prob-
lem 2 for different methods at  and   
Method Number grid points Max of u
BDQM 1.094325E-07
ADI-DQM[3]  1.131288E-05
LDQM 5.348801E-05
RBFBMM 4.97E-02

Table 9. Comparison of the numerical results of the prob-
lem 3 for different methods at   .  

Method Number grid 
points Max  of u Max of v

BDQM 1.877131E-05 1.877144E-05
LDQM 1.943390E-05 1.943416E-05
ADI-
DQM 1.308369E-05 2.824992E-05

6- Stability analysis of BDQM
The stability of numerical schemes is closely related to nu-
merical error. A solution is said to be unstable if errors appear 
at some stage in the calculations (for example, from errone-
ous initial conditions or local truncation or round-off errors) 
are propagated without bound throughout subsequent cal-
culations. Thus a method is stable if small changes in the ini-
tial data produce correspondingly small changes in the final 
results, that is, the difference between the theoretical and 
numerical solutions remains bounded at a given time t , as 
time and space steps tend to zero or time step remains fixed 
at every level and [2]. So stability, means that the numerical 
solution must be close to the exact solution, meaning that 
whenever was the error a little  the deviation in derivatives, 
however, this error may accumulate at each time step and 
affects to the stability of the solution.

Theorem[24]
The system of ODE  with a constant coefficient matrix  is,
(1)	 Stable if the roots of the characteristic polynomial are 

purely imaginary.
(2)	 Asymptotically stable if the roots have negative real 

parts.
(3)	 Unstable if a root has positive real part.

From application of BDQM to the any convection-diffusion 
equation in this work, we obtained the set ordinary differen-
tial equations:

where  is a vector of unknown functional values at all the in-
terior points given by

and  is a known vector which is made up of the non-homoge-
neous part and the boundary conditions given by

and  is the coefficient matrix containing the weighting coef-
ficients, the dimension of the matrix  is by . For the multi-
dimensional case, the matrix  contains many zero elements, 
which are irregularly  distributed in the matrix.
The stability analysis of the Equation (31) is based on the ei-
genvalue distribution of the BDQM discretization matrix . If 
has eigenvalues   and corresponding eigenvector , being the 
size of the matrix, the similarity transformation reduces the 
system (31) of the form[1,10,26].

Here the diagonal matrix [D] is formed from the eigenvalues 
and from a nonsingular matrix [P] containing the eigenvectors 
as columns

Pre-multiplying by the matrix  on the both sides Equation 
(32) and setting

Since  is a diagonal matrix, Equation (32) is an uncoupled set 
of  ordinary differential equations.
Considering the  equation of (32)

If  is time-independent, then the solution of Equation (36) can 
be written as

For this case, using Equations (34) and (35), the solution  can 
be obtained as

where  denotes the real part of . This is the stability condition
for the system (31).
In this section, we can applied the stability condition (39) on 
the problems that mentioned in the previous section by us-
ing BDQM. 

Problem 1. 
From the application of BDQM to the Equation (11) and us-
ing ,,  Equation (11) can be rewritten as:

From Equation (40), we can obtain a system of algebraic 
equations (31).
This system has the solution (38), and this solution is stable as  
and the real parts of the eigenvalues of the matrix are: 

This means that the stability condition (39) is hold.

Problem 2. 
From the application of BDQM to the Equation (18) and us-
ing , and , Equation (18) can be rewritten as:

 
From Equation (41), we can obtain a system of algebraic 
equations (31).
This system has the solution (38), and this solution is stable 
as  and the real parts of the eigenvalues of the matrix  for  
respectively, are:

This means that the stability condition (39) is hold.

Problem 3. 
From the application of BDQM to the Equation (23) and us-
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ing ,  and , Equation (23) can be rewritten as:

From Equation (42), we can obtain a system of algebraic 
equations (31).
This system has the solution (38), and this solution is stable as  
and the real parts of the eigenvalues of the matrix are:

This means that the stability condition (39) is hold. When us-
ing the equation (24), we will find the same eigenvalues men-
tioned above of the matrix [A].

Finally, the numerical results of the above problems confirm 
that the newly developed method BDQM is stable for the 
grid points . In this work, with the help of symbolic computa-
tion software Maple 13, the eigenvalues are computed.

7- Conclusions
In this work, we employed a new technique BDQM to solve 
convection-diffusion equations successfully. The weight-
ing coefficients for spatial derivatives are computing by use 
Bernstein polynomials as test functions. The numerical results 
show that the new method has higher accuracy, good con-
vergence and reasonable stability as well as a less computa-
tion workload by using few grid points.
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