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ABSTRACT The main purpose of this paper is to obtain fixed point theorems for sequence of mappings under partial 
metric spaces which generalizes theorem of four authors [5].

1. INTRODUCTION
Partial metric spaces were introduced by Matthews [1] in 
1992 as a part of the study of denotational semantics of da-
taflow networks. In fact, it is widely recognized that partial 
metric spaces play an important role in constructing models 
in the theory of computation.

2. PRELIMINARIES
Before proving our results we need the following definitions 
and known results in this sequel [1, 2, 4].

Definition2.1. ([1]). A partial metric on a nonempty set X is a 
function p: X × X ------>R+ such that for all x, y, z ε X:

(p1) x=y <==> p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x,y) ≤ p(x,z)+ p(z,y)-p(z,z).

A partial metric space is a pair (X, p) such that X is a non-
empty set and p is a partial metric on X.

Remark 2.2. It is clear that, if p(x, y) = 0, then from (p1) and 
(p2), x = y. But if x = y, p(x, y) may not be 0. A basic example 
of a partial metric space is the pair (R+,p),

where p(x,y) = max{x,y} for all x; y ε R+ .Each partial metric p 
on X generates a T0 topology τp on X which has as a base 
the family of open p-balls {Bp(x, ε ), x ε X, ε >0} where Bp(x, ε) 
= {y ε X: p(x, y) < p(x, x) + ε} for all x ε X and ε > 0.

If p is a partial metric on X, then the function ps : X × X -----
->R+ given by

ps(x, y) =2p(x, y)-p(x, x)-p(y, y) is a metric on X.

Definition 2.3. Let (X, p) be a partial metric space and {xn} be 
a sequence in X. Then

(i){xn} converges to a point x ε X if and only if p(x, x) = 

(ii) {xn} is called a Cauchy sequence if there exists (and is fi-
nite) 

Definition 2.4. A partial metric space (X, p) is said to be com-
plete if every Cauchy sequence {xn} in X converges, with re-
spect to τp, to a point x ε X, such that 

p(x, x) = 

Remark 2.5. It is easy to see that every closed subset of a 
complete partial metric space is complete.

Lemma 2.6 ([1, 2]). Let (X, p) be a partial metric space. Then 
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a 
Cauchy sequence in the metric space (X,ps),

(b) (X, p) is complete if and only if the metric space (X,ps) is 
complete. Furthermore,

if and only if

Matthews [1] obtained the following Banach fixed point theo-
rem on complete partial metric spaces.

Theorem 2.7[1]. Let f be a mapping of a complete partial 
metric space (X, p) into itself such that there is a real number 
c with 0≤ c < 1, satisfying for all x, y ε X:p(fx,fy) ≤c p(x,y).

Then f has a unique fixed point.

3. MAIN RESULTS
Before stating the main results, we recall the following defini-
tions. 

Definition 3.1. Let X be a non-empty set and T1, T2: X→X are 
given self-maps on X. 

If w = T1x = T2x for some x ε X, then x is called a coincidence 
point of T1 and T2, and w is called a point of coincidence of 
T1 and T2.

Definition 3.2 [3]. Let X be a non-empty set and T1, T2: X→X 
are given self-maps on X. The pair {T1, T2} is said to be weakly 
compatible if T1T2t = T2T1t, whenever T1t = T2t for some t in X.

Our main result is the following.

Theorem 3.3. Suppose that Ai, Aj (i≠j) S, T are self-maps of a 
complete partial metric space (X, p) such that AiX ⊆ TX, AjX
⊆  SX (i≠j) and P (Aix; Ajy) ≤Φ (M(x, y)) ---- (3.1) for all 

x, y ε X, where Φ ε Φ and M(x,y)=max{p(Sx,Ty),p(Aix,Sx), 
p(Ajy,Ty), 1/2[p (Sx, Ajy) +

p (Aix, Ty)]}.If one of the ranges AiX, AjX, TX and SX is a 
closed subset of (X, p), then (i) Ai and S have a coincidence 
point, (i≠j) (ii) Aj and T have a coincidence point. Moreover, 
if the pairs {Ai, S} and {Aj, T} (i≠j) are weakly compatible, then 
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Ai, Aj(i≠j), T and S have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Since AiX ⊆ TX, 
there exists x1 ε X such that 

Tx1 = Aix0. Since AjX ⊆ SX, there exists x2 ε X such that Sx2 
= Ajx1(i≠j). Continuing this process, we can construct se-
quences {xn} and {yn} in X defined by

y2n = Tx2n+1= Aix2n , y2n+1 = Sx2n+2= Ajx2n+1 ----- (3.2) 
for every n ε N (i≠j) 

We claim that {yn} is a Cauchy sequence in the partial metric 
space (X, p).

We have: M (x2p, x2p+1) = max {p (Sx2p, Tx2p+1), p (Aix2p, 
Sx2p), p (Ajx2p+1,Tx2p+1), 

½[p (Sx2p, Ajx2p+1) + P (Aix2p, Tx2p+1)]} for (i≠j),

M (x2p, x2p+1) = max {p (y2p-1, y2p), p (y2p, y2p-1), p 
(y2p+1,y2p), ½[p (y2p-1, y2p+1) + p (y2p, y2p)]}

M (x2p, x2p+1) = max {p (y2p-1, y2p), p (y2p+1, y2p), ½[p 
(y2p-1, y2p) + p (y2p, y2p+1)]}

M (x2p, x2p+1) = max {p (y2p-1, y2p), p (y2p+1, y2p)}

Since p (y2p-1, y2p+1) +p (y2p, y2p) ≤ p (y2p-1, y2p) +p (y2p, 
y2p+1).

Using that Φis non-decreasing function, we get:

Φ (M (x2p, x2p+1)) ≤ Φ (max {p (y2p-1, y2p), p (y2p, y2p+1)})

From the contraction condition (3.1) with x = x2p and y = 
x2p+1, we get:

p (y2p, y2p+1) ≤ Φ (max {p (y2p-1, y2p), p (y2p, y2p+1)}) ---
-- (3.3)

Similarly we obtain p (y2p+1, y2p+2) ≤ Φ (max {p(y2p, 
y2p+1),p (y2p+1, y2p+2) })-----(3.4)

Therefore, from (3.3) and (3.4),

p (yn, yn+1) ≤ Φ (max {p (yn-1, yn), p (yn, yn+1)}) for suffi-
ciently large n-------                             (3.5)

Suppose that there exists p ε N such that p (y2p-1 y2p) = 0. 
Then we have y2p-1= y2p and from (3.3), we obtain: p (y2p, 
y2p+1) ≤ Φ ((p (y2p, y2p+1)).

Since Φ (t) < t for each t > 0, the above inequality implies that 
p (y2p, y2p+1) = 0 and then 

y2p = y2p+1. From (3.4), we get: p (y2p+1, y2p+2) ≤ Φ (p 
(y2p+1, y2p+2)), which implies that 

y2p+1= y2p+2. Hence, we have y2p-1 = y2p= y2p+1 = 
y2p+2 = ----------------

Then {yn} is a Cauchy sequence in (X, p). The same conclusion 
holds if we suppose that there exists p ε N such that p (y2p, 
y2p+1) = 0, 

Now, we assume that p (yn, yn+1) > 0, for sufficiently large n 
------                                                  (3.6)

Then from (3.5), as Φ (t) < t for all t > 0, we have

 p (yn, yn+1) < max {p (yn-1,yn), p (yn,yn+1)}.

Hence we get p (yn, yn+1) < (p(yn-1,yn).

Therefore, Max {p (yn-1,yn), p (yn,yn+1)} = p (yn-1, yn) for 
sufficiently large n

Thus from (3.5), p (yn, yn+1) ≤ Φ (p (yn-1,yn)) for sufficiently 
large n-----                               (3.7)

Repeating this inequality n time we obtain

p (yn, yn+1) ≤ Φn (p (y0,y1)) -------               (3.8)

By the properties (p2) and (p3) we have

Max {p (yn,yn), p (yn+1,yn+1)} ≤ p (yn, yn+1)

Thus from (3.8), max {p (yn,yn), p (yn+1,yn+1)} ≤ Φn p (y0, 
y1)------                             (3.9)

Therefore,ps((yn,yn+1)=2p(yn,yn+1)- p(yn,yn)-p(yn+1,yn+1) 
≤2p(yn,yn+1)+p(yn,yn)+p(yn+1,yn+1)

≤4Φn p ((y0, y1)).

Now by the triangle inequality for the metric ps and (3.9), for 
any k, n ε N* we have

ps(yn,yn+k) ≤ ps(yn,yn+1)+ ps(yn+1,yn+2)+ 
----------------+ps(yn+k-1,yn+k),

 ≤ 4 Φn p ((y0, y1)) + 4Φn+1 p ((y0, y1)) +-------------+4Φn+k-1 
p ((y0, y1))

Hence and from the property (b) of Φ we conclude that for 
an arbitrary ε > 0 there is a positive integer n0 such that 
ps(yn,yn+k) < ε for every n≥ n0 and all k ε N

Thus we proved that {yn} is a Cauchy sequence in the metric 
space (X,ps).

Since (X, p) is complete, then from Lemma2.6, (X,ps) is a 
complete metric space. 

Therefore, the sequence {yn} converges to some y ε X, that is, 

From the properties (b) in Lemma 2.6, we have

                                                                                          (3.10)

Moreover, since {yn} is a Cauchy sequence in the metric 
space (X,ps), then 

and so from (3.9) and the property (b) of Φ we have -----------                                                                                                                                      

                                                            (3.11)

Thus from the definition of ps and (3.11), we have 

Therefore, from (3.10), we have 

Thus from (3.13) we have



INDIAN JOURNAL OF APPLIED RESEARCH  X 401 

Volume : 3 | Issue : 9  | Sept 2013 | ISSN - 2249-555XRESEARCH PAPER

Now we can suppose, without loss of generality, that SX is a 
closed subset of the partial metric space (X, p). From (3.15), 
there exists u ε X such that y = Su. We claim that 

p (Aiu, y) =0. Suppose, to the contrary, that p (Aiu, y) > 0. 

By (p4) and (3.1) we get

p (y,Aiu) ≤ p (y,Ajx2n+1) +p (Aiu,Ajx2n+1) - p (Ajx2n+1, 
Ajx2n+1) for (i≠j)

≤ p (y,Ajx2n+1) +p (Aiu,Ajx2n+1)

≤ p (y,Ajx2n+1)+ Φ (M(u,x2n+1))

By (3.2) we have M(u,x2n+1)=max{p(y,y2n)p(Aiu,y), p(y2n+1,y
2n),1/2[p(y,y2n+1)+p(Aiu,y2n)] }

≤ max{p(y,y2n)p(Aiu,y), p(y2n+1,y2n),1/2[p(y,y2n+1)+p(Aiu,y)
+p(y,y2n),p(y,y)] }------------(3.16)

Since Φ is continuous, from (3.16), (3.12), and letting n→∞ 
we obtain

Hence, as we supposed that p (Au, y) > 0 and as Φ (t) < t for 
t > 0, we have

P(y, Aiu) < p(y, Aiu) which is a contradiction. 

Therefore, p(Aiu,y) = 0

=>y=Aiu----------------------- (3.17)

Since y = Su, then Aiu = Su, that is, u is a coincidence point 
of Ai and S. 

Hence the proof of (i).

Since AiX ⊆  TX and (3.17), we have y ε TX.

Therefore there exists v ε X such that y = Tv. We claim that

p (Ajv, y) = 0. Suppose, to the contrary, that p (Ajv, y) > 0. 
From (3.1) we have

p(y,Ajv)=p(Aiu,Ajv)≤ Φ (M(u,v))-----------(3.18)

where M(u,v)=max{p(Su,Tv),p(Aiu,Su), p(Ajv,Tv),1/2[p(Su, 
Ajv)+p(Aiu,Tv)] }.

= max{p(y,y),p(y,y), p(Ajv,y),1/2[p(y, Ajv)+p(y,y)] }.(by 3.17)

Here y = Su = Aiu = Tv. Hence by (3.12),

M (u, v) =p (Ajv, y)

Thus from (3.18), we have p (Ajv, y) ≤ Φ (p (Ajv, y)) < p (Ajv, y)

This is a contradiction. Then, we deduce that p (Ajv, y) =0 and 
y=Ajv=Tv-------- (3.19)

Therefore v is a coincidence point of Aj and T, then (ii) holds.

Since the pair {Ai, S} is weakly compatible, from (3.17), we 
have Aiy = AiSu = SAiu = Sy. 

We claim that p (Aiy, y) =0. Suppose, to the contrary, that p 
(Aiy, y) > 0. We have

p(Aiy,y)≤ p(Aiy,y2n+1))+p(y2n+1,y)

= (p (Aiy,Ajx2n+1)) +p (y2n+1, y)

≤Φ (M(y,x2n+1)) +p (y2n+1, y) --------------- (3.20)

On the other hand, we have

M(y,x2n+1)= max{p(Sy,Tx2n+1),p(Aiy,Sy), 
p(Ajx2n+1,Tx2n+1),1/2[p(Sy, Ajx2n+1)+p(Aiy,T2n+1)] }.

= max{p(Aiy,y2n),p(Aiy, Aiy), p(y2n+1,y2n),1/2[p( 
Aiy,y2n+1)+p(Aiy,y2n)] }.

Using (3.12) and (p2), we get

M(y,x2n+1)= max{p(Aiy,y), p(Aiy, Aiy),0,p(Aiy,y)}

= p (Aiy, y) as n→+∞ ---------------- (3.21)

Using (3.21), the continuity of Φ, (3.12) and letting n+ ∞ in 
(3.20), we obtain

p (Ajy, y) ≤ Φ (p (Aiy, y)) < p (Aiy, y),

Which is a contradiction. 

Then we deduce that p (Aiy, y) =0 and Aiy=Sy=y------------- 
(3.22)

Since the pair {Aj, T} is weakly compatible, from (3.19), we 
have Ajy = AjTv = T Ajv = Ty. We claim that p (Ajy, y) = 0. 

Suppose, to the contrary, that p (Ajy, y) > 0, then by (3.1) and 
(3.22), we have

p(y,Ajy)= p(Aiy,Ajy)≤Φ (M(y,y)), where M(y,y)=max{p(Sy,Ty),p(
Aiy,Sy),p(Ajy,Ty),

1/2[p (Sy, Ajy) +p (Aiy, Ty)]}.

=max{p(y,Ajy),p(y,y), p(Ajy,Ajy),1/2[p(y, Ajy)+p(y,Ajy)] }.

= p (Ajy, y).

Thus, we get p(y,Ajy) ≤Φ (p (Ajy, y))) <p (Ajy, y),

This is a contradiction. We deduce that

p(y,Ajy) =0 and Ajy=Ty=y--------- (3.23)

Now, combining (3.22) and (3.23), we obtain

y=Aiy=Ajy=Sy=Ty, (i≠j).

That is, y is a common fixed point of Ai, Aj, S and T.

Uniqueness 
Let us suppose that z ε X is a common fixed point of Ai, Aj, S 
and T, with p (z, y) > 0. 

Using (3.1), we get p (y,z)=p(Aiy,Ajz)

≤ Φ (max{p (Aiy,Ajz),p (Aiy,Ajy),p(Ajz,Ajz),1/2[p(Aiy, Ajz) 
+p(Aiz, Ajy)]})

= Φ (max{p(y,z),p(y,y)p(z,z)})=Φ(p(y,z))<p(y,z) 

Which is a contradiction. Then we deduce that z = y. 

Therefore, the uniqueness of the common fixed point is 
proved. 
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That is, the proof of the theorem is complete.

Corollary 3.4[5]. Suppose that A, B, S, and T are self-maps of 
a complete partial metric space (X, p) such that AX ⊆ TX, BX
⊆  SX and p(Ax, By) ≤Φ (M(x, y)) for all x, y ε X, where Φ ε Φ and 
M(x,y)=max{p(Sx,Ty),p(Ax,Sx), p(By,Ty),1/2[p(Sx,By)+p(Ax,Ty)] 
}.

If one of the ranges AX, BX, TX and SX is a closed subset of 
(X, p), then (i) A and S have a coincidence point, (ii) B and T 
have a coincidence point.

Moreover, if the pairs {A, S} and {B, T} are weakly compatible, 
then A, B, T and S have a unique common fixed point.

Corollary 3.5. Suppose that S and T are self-maps of a com-
plete partial metric space (X, p) such that TX ⊆  SX and p(TX, 
Ty) ≤Φ (M(x, y)) for all x, y ε X, where Φ ε Φ and M(x,y)≤max{p(
Sx,Sy),1/2[p(Tx,Sx)+p(Ty,Sy)],1/2[p(Ty,Sx)+p(Tx,Sy)] }.

If one of the ranges TX and SX is a closed subset of (X, p), 
then (i) S and T have a coincidence point, (ii) Moreover, if the 
pairs { S,T} is weakly compatible, then T and S have a unique 
common fixed point.

Proof. The proof follows from above theorem 3.3.


