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ABSTRACT Purpose - Mesenchymal stem cells (MSCs) hold apromise for the treatment of renal disease, While MSCs have 
been shown to accelerate renal recovery and prevent acute renal failure in multiple disease models, the effect 

of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. Materials and Methods - 
60 C57Bl/6 male mice underwent injection of bone marrow-derived stem cells (MSCs) immediately prior to sham operation 
or induction of left ureteral obstruction (UUO). One or 2 weeks later, the kidneys were harvested, fixed in 10% buffered 
formalin, and embedded in paraffin for morphological studies. Total renal collagen was measured biochemically in all mice 
involved in this study. Results - there was a significant decrease in renal collagen in all MSC groups compared to all control 
groups (p < 0.001). Kidney specimens obtained from mice treated with MSC before operation showed regeneration of the 
renal tubular cells, less tubular atrophy, very mild interstitial fibrosis and normal blood vessels. While kidney specimens 
obtained from mice treated with MSC (1Week)and (2 Weeks) after induction of UUO showed mild shrinkage of vascular tuft 
with normal basement membrane and cellularity, marked tubular atrophy with cast formation, mild interstitial fibrosis and 
normal blood vessels. Conclusions - Bone marrow-derived MSCs provide protection against renal tubulointerstitial injury 
induced by ureteral obstruction.

Introduction:
Obstructive uropathy with resultant hydronephrosis is the 
eventual outcome of many urological disorders. Apart from 
accidental ligation or ureteric calculus, obstruction is nearly 
always chronic or partial (Shehab and El Helali et al., 2013). 
The renal consequences of chronic urinary tract obstruction 
are very complex, and lead to renal injury and renal insuf-
ficiency (Chevalier, 2006). 

Obstruction induced renal injury is a gene-directed process 
that is dependent on the interaction of a variety of different 
biological mediators and cell signaling cascades (Zhao and 
Santivanez et al., 2014).

The molecular and cellular changes that occur in urinary tract 
obstruction, including;

i)	 Tubulointerstitial Inflammation
ii)	  Tubulointerstitial Fibrosis
iii)	 Apoptotic Renal Cell Death
Stem cells are characterized by their self-renewal properties 
and capacity to generate differentiated cell lineages (Kumar 
et al., 2010). They are found in adult and embryonic tissues 
and have potential uses in therapies designed to repair and 
regenerate organs .Self-renewal property aims to maintain 
stem cells during life (Ricardo and Deane, 2005).

Bone marrow contains multipotent marrow stromal cells 
called mesenchymal stem cells (MSCs) in addition to hemat-
opoietic stem cells. They have diverse functions. They pro-
vide extracellular matrix, cytokines, and growth factors to 
support the growth and differentiation of hematopoietic cells 
in vitro culture (Lee and Shah et al., 2010). They can give rise 
to multiple mesenchymal lineages (Prockop et al., 2003). 

(Imberti et al.,2007) suggest that this humoral function of 
MSCS  results from insulin like growth factor 1 (IGF 1), where-
as (Bi et al.,2007) attributed it to a combination of hepatic 
growth factor (HGF), epidermal growth factor (EGF) and in-
sulin like growth factor 1 (IGF 1). (Togel et al., 2008) suggest 
that angiogenic vascular endothelial growth factor (VEGF) is 
the critical factor in the renoprotection afforded by MSCs. 

Bone morphogenetic protein 7 (BMP7) has also been shown 
to protect against fibrosis (Zeisberg and Kalluri, 2008).

There are endogenous sources of all these growth factors in 
the kidney. So why doesn’t renal repair occur spontaneously 
in some cases?

The answer may be due to the inflammatory environment 
after injury (Togel et al., 2005). suggested that MSCs exert 
their renal protection through inhibition of proinflammatory 
cytokines. In fact, the reparative role of MSCs may be mul-
tifunctional and include the secretion of anti-inflammatory 
cytokines like transforming growth factor β1 to limit apop-
tosis, enhance proliferation and dampen the inflammatory 
response (Hopkins et al., 2009).

3 .Action of MSCs on endogenous renal cells:
Mesenchymal stem cells may act also on an existing endoge-
nous cell population, potentially a renal stem cell population, 
to repair renal architecture and function (Little and Bertram, 
2009). Once injury has occurred, repair of the tubule requires 
the dedifferentiation, migration, and proliferation of the sur-
viving tubular cells. In addition, it has been proposed that 
resident renal stem cells participate in the reparative phase 
by migrating into the tubule and differentiating into epithelial 
cells (Takashima and Paul et al., 2013).

−	 Bones were flushed with 3-5ml of complete media from 
one end, the marrow plugs were expelled from the op-
posite end of bone into sterile 15ml tube.

−	 The marrow plugs were cultured in 20 ml complete me-
dia.

 
Culturing of bone marrow (Mcfarlin et al., 2006):
−	 The cells were cultured in 75cm2 tissue culture flask con-

taining 10-15 ml complete media in humidified incubator 
at 37oC in 5% CO2 and 95% air (by volume).

−	 The cultured cells were examined daily using the invert-
ed microscope to follow up the growth of the cells.

−	 After 24h the old media were removed by aspiration us-
ing sterile pipette, the cells were then washed with 5ml 
PBS, then 15ml complete media was added to the flask, 
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MSCs were distinguished from other bone marrow cells 
by their ability to adhere to tissue culture polystyrene 
flask.

−	 The second exchange for media was done after 3-4 days.
−	 The cells take 4 weeks to be confluent and be ready for 

Passaging.
−	 Passaging was done for the cells till passage 3 were we 

had a suitable number of cells.
−	 The media changed twice a week.
 
Counting cells
Stem cells were resuspensed in 1 ml of appropriate media 
then from this cell suspension, 10 µl was removed for count-
ing depending on the (using a microscope) cell number, a 
dilution factor between two and ten was used to count cells, 
test the cell viability 10µl of cells was add to 10 µl of Trypan 
blue 0.4% (lonza, USA) and mix them well and take 10µl of 
the mixture and put it on hemocytometer (Neubauer, Ger-
many) and count cell under Ordinary microscope (Olympus 
CX31, USA). Then use this equation.  NO of cells / ml. = aver-
age of count cells x dilution factor x 104 (Takahashi, Tanabe 
et al., 2007).

Experimental model (UUO):
Unilateral ureteral obstruction (UUO) was done as follow: 
with the mice under pentobarbital anesthesia (12 mg/100 
gm Body Weight), then the abdomen was entered through 
midline laparotomy and the left ureter was ligated with 4-0 
silk at two locations and cut between the ligatures to prevent 
retrograde urinary tract infection at the ureteropelvic junc-
tion. The abdominal incision was sutured by 4/0 silk sutures 
(Satoh et al., 2001).

Sham operation 
Sham operation was done as follow: with the mice under 
pentobarbital anesthesia (12 mg/100 gm body weight), then 
the abdomen was entered through midline laparotomy and 
the left ureter was manipulated then the abdominal incision 
was sutured by 4/0 silk sutures (Satoh et al., 2001).

Investigations Provided to Measure Renal Injury:
Mice Sacrifice and Kidney Removal: Mice will be sacrificed to 
evaluate the severity of injury in each kidney, at the end point 
all mice will be sacrificed under anesthesia induced with 
phentobarbital sodium injection (50 mg/kg body weight in-
traperitoneal) then Kidneys will be removed, cut transversely 
and will be fixed in 10% buffered formalin, and embedded in 
paraffin for morphological study     (Yamagishi H et al., 2001).

Kidney specimens obtained from mice in positive control 
groups treated with saline 1 and 2 weeks after induction of 
UUO showed marked disturbed kidney architecture in the 
form of shrinkage of vascular tuft,  thrombosis of glomeru-
lar capillaries, disrupted glomerular basement membrane 
(glomerular necrosis),  marked tubular  atrophy with tubular 
necrosis,  interstitial haemorhage, fibrosis and inflammation 
with normal blood vessels. Fig.3a and b are representive 
samples from positive control group (1Week), while Fig.4a 
and b are representive samples from positive control group 
(2Weeks).

Kidney specimens obtained from mice treated with MSC 
before operation showed regeneration of the renal tubular 
cells, less tubular atrophy, very mild interstitial fibrosis and 
normal blood vessels (fig. 5). While kidney specimens ob-
tained from mice treated with MSC 1 Week and 2 Weeks 
after induction of UUO showed mild shrinkage of vascular 
tuft with normal basement membrane and cellularity, marked 
tubular atrophy with cast formation, mild interstitial fibrosis 
and normal blood vessels. Fig.6 is a representive sample 
from MSC group (1Week), while Fig.7 is a representive sam-
ple from MSC group (2Weeks).

Bone marrow-derived stem cells (BMSC) such as haemat-
opoietic stem cells (HSC) possess a high degree of plasticity, 

indicated by the fact that they contribute to the restoration 
of injured peripheral tissue (Grove et al., 2004; Lakshmipathy 
and Verfaillie, 2005). The supposed mechanisms underlying 
this regenerative response are that BMSC transdifferentiate 
into the principal cells of the injured tissue and fuse with 
it (Rodic et al., 2004; Leri et al., 2005). Although there are 
also indications that a more paracrine fashion of support 
may arise by providing relevant growth factors (Togel et al., 
2005; Hess et al., 2003). Among the non-haematopoietic tis-
sues targeted by BMSC also the kidney can be found (Lin 
et al., 2003; Kale et al., 2003). Moreover, BM-derived cells 
have the capability to migrate through the glomerular base-
ment membrane and can thus end up in the luminary space 
of Bowman’ capsule, thereby crossing the obstacle set up by 
the basement membrane. So, the present study investigated 
the effect of therapy with BM derived stem cells on the re-
generative process in a mice model of UUO. (Sugimoto et 
al., 2006).

Complete ureteric obstruction is characterized by an inter-
stitial infiltration of mononuclear cells, release of cytokines, 
fibroblast activation, tubular proliferation, death and atrophy, 
and imbalance of extracellular matrix synthesis, and degrada-
tion (Hewitson et al., 2010).

 Also, UUO is associated with progressive renal fibrosis and 
scarring and a decline in renal function. Inflammatory cell 
infiltration occurs in renal interstitium shortly after ureteral 
obstruction, releasing cytokines and TGF, including relatively 
well- known TGF-β1 and Tumor necrosis factor alpha (TNF-α), 
which promote extracellular matrix synthesis and prolifera-
tion of fibroblast (Chevalier et al., 2009).

The observed up-regulation of MMP at d 9 after UUO is 
most likely a compensatory response, with the increase in 
MMP potentially being a reaction to increased TGF- (Wick et 
al., 2001). and/or collagen (Olaso et al., 2001). production. 
Nevertheless, this seems to have been overwhelmed by the 
rapid fibrogenesis. However, it was noted that degradation 
of basement membranes may also promote epithelial-mes-
enchymal transition in kidney disease (Hewitson et al., 2007).

Extensive studies on MSC  therapy  in various acute and  
chronic  renal  diseases, mostly with  a  rodent  animal  model 
and different degrees of  therapeutic effects, could  be  found 
at present so, the aim of this study was to investigate the 
effect of treatment with stem cells before and 1 week and 2 
weeks after induction of unilateral ureteral obstruction. It was 
found in this study high significant improvement in hydroxy 
proline marker   in mice exposed to UUO and treated with 
MSC before induction of obstruction also, mice exposed to 
UUO and treated with MSC 1 week and 2 week after induc-
tion of UUO showed significant reduction in hydroxy proline 
marker. However, the effect of treatment before induction of 
UUO was marked than treatment after induction by 1 Week 
and 2 Week.

These findings are in agreement with several studies demon-
strated that the administration of bone marrow-derived MSC 
may protect or reverse both acute kidney injury and chron-
ic kidney disease, as well as in other experimental models 
(Striker, 2011; Alexandre et al., 2009; Lindoso et al., 2011; 
Ninichuk et al., 2006; Perico et al., 2011; . Tögel and West-
enfelder, 2010; Tögel et al., 2009; Herrera et al., 2007; Behr 
et al., 2009; Zhi-ming et al., 2013). Demonstration in a mice 
model of unilateral ureteral obstruction (UUO) that MSCs had 
intensified signals in left kidney region on the 3rd day after 
administration of it. (Zhi-ming et al., 2013).

Renal myofibroblasts are reported to be derived from differ-
ent sources: from proliferating interstitial fibroblasts, from the 
transition of tubular epithelial cells (TEC) into myofibroblasts 
and from the bone marrow (BM) (Kalluri et al., 2003). Fibro-
cytes are circulating blood-borne cells displaying leukocyte 
surface markers and which produce extracellular matrix pro-
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teins. Fibrocytes are involved in wound repair, upon TGFb1 
exposure may express alpha-SMA (Quan et al., 2004).

Fibrocytes are thought to be important in mediating pulmo-
nary fibrosis (Phillips et al., 2004) and it recently have been 
implicated in renal fibrosis (Sakai et al., 2006).

(Stokman et al., 2008) found that the total number of alpha 
smooth muscle actin (alpha-SMA) expressing cells after UUO 
did not differ between both treatments groups, suggesting 
that if fibrocytes are the potential source of BM-derived my-
ofibroblasts in the kidney, their contribution to fibrosis was 
not altered by cytokine induced mobilization in our study. 

In accordance, collagen type I deposition by BM derived 
(myo) fibroblasts in UUO injury was found to be insignificant 
compared to that of fibroblasts of renal origin (Roufosse et 
al., 2006). 

Table (1): Effect of mesenchymal stem cell therapy on 
hydroxyproline content (measure of fibrosis) in kidney 
tissues in mice model of unilateral ureteral obstruction 
(UUO) at day 14.

All data are expressed as Mean ± SD. One way ANOVA test 
with posthoc Tukey’s test. a  significant vs sham group, b  sig-
nificant vs control group (1 W), c  significant vs control group 
(2 W), d significant vs UUO (before OP), e   significant vs UUO 
(1 W) (p≤ 0.05).

 Fig. (1): Effect of mesenchymal stem cell therapy on hy-
droxyproline content (ug/mg kidney tissue) in unilateral 
ureteral obstruction mice model. a significant vs sham 

group, b significant vs control group (1 W), c significant vs 
control group (2 W), d significant vs UUO (before OP), e 
significant vs UUO (1 W) (p≤ 0.05).

Fig. (2a): kidney specimens with normal architecture (nor-
mal glomeruli and renal tubules (sham group) (magnifica-
tion 100x).

Fig. (2b): kidney specimens with normal architecture (nor-
mal glomeruli and renal tubules (sham group) (magnifica-
tion 100x).

Fig. (3a): kidney specimens showing  shrinkage of vas-
cular tuft with thrombosis of glomerular capillaries, 
marked tubular  atrophy with tubular necrosis,  interstitial 
haemorhage and normal blood vessels. Control group (1 
Week) Magnification a= 100x.
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Fig. (3b): kidney specimens showing  shrinkage of vas-
cular tuft with thrombosis of glomerular capillaries, 
marked tubular  atrophy with tubular necrosis,  interstitial 
haemorhage and normal blood vessels. Control group (1 
Week) Magnification b= 400x.

Fig. (4a): kidney specimens showing marked thrombosis 
in glomerular capillaries with disrupted glomerular base-
ment membrane, Leukocytic infiltration (glomerular necro-
sis), marked tubular necrosis, interstitial haemorhage and 
inflammation and normal blood vessels. Control group (2 
W) Magnification a= 100x.

Fig. (4b): kidney specimens showing marked thrombosis 
in glomerular capillaries with disrupted glomerular base-
ment membrane, Leukocytic infiltration (glomerular necro-
sis), marked tubular necrosis, interstitial haemorhage and 
inflammation and normal blood vessels. Control group (2 
W) Magnification b= 400x.

Fig. (5): kidney specimens showing regeneration of the 
lumen, less tubular atrophy, very mild interstitial fibrosis 
and normal blood vessels. MSC group (before OP) Magni-
fication a= 100x.

Fig. (6): kidney specimens showing normal regarding mes-
sangium and vascular tuft, mild interstitial fibrosis and 
normal blood vessels. MSC group (1W) Magnification a= 
100x
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Fig. (7): kidney specimens showing showed mild shrinkage 
of vascular tuft with normal basement membrane and cel-
lularity, marked tubular atrophy with cast formation, mild 
interstitial fibrosis and normal blood vessels. MSC group 
(2W) Magnification a= 100x.
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