

Domination of Complement of A Splitted Graphs

KEYWORDS	Domination, Splitted graph, complement of splitted graphs	
* A.NELLAI MURUGAN		A.ESAKKIMUTHU
PG and Research Department of Mathematics V O Chidambaram College, Tuticorin-628008,TN, INDIA, * Corresponding Author		PG and Research Department of Mathematics V O Chidambaram College, Tuticorin-628008,TN, INDIA
ABSTRACT Let G be (p,q) graph. A set D of vertices in a complement of any splitted graph [S(G)] ^C =(V,E) is called a domi-		

ABSTRACT Let G be (p,q) graph. A set D of vertices in a complement of any splitted graph [S(G)]^c=(V,E) is called a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number γ[[S(G)]^c] of [S(G)]^c is minimum cardinality of a domination set of [S(G)]^c

1. INTRODUCTION

Let G be a (p,q) graph, By a graph, we mean a finite simple and undirected graph. The vertex set and edge set of a graph G denoted are by V (G) and E(G) respectively. Let G be a graph. For each vertex v of a graph G , take a new vertex u . Join u to those vertices of G adjacent to v . The graph thus obtained is called the splitting graph of G . It is denoted by S(G) . For a graph G , the splitting graph S(G) is obtained by adding a new vertex v corresponding to each vertex u of G such that N(u) = N(v) and it is denoted by S(G) .

2. PRELIMINARIES

Let G be (p,q) graph. A set D of vertices in a complement of any splitted graph $[S(G)]^{C} =$ (V,E) is called a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma [[S(G)]^{C}]$ of $[S(G)]^{C}$ is minimum cardinality of a domination set of $[S(G)]^{C}$

3.RESULTS

Theorem 3.1. Let $[S(G)]^C$ be a Complement of splitted graph. If D is a minimal domination set, then V-D is also a domnating set.

Proof. Let S(G) be a splitted graph. Let $[S(G)]^{C}$ be a Complement of S(G). Let D be a

minimal dominating set of $[S(G)]^{C}$. Suppose V-D is not a dominating set. Then there exists a vertex u such that u is not dominated by any vertex in V-D. u is dominated by atleast one vertex in D-{u}. which is contradicts the minimality of D.Thus every vertex in D is adjacent with atleast one vertex in V-D. Hence V-D is a dominating set.

For example complement of $S(P_2)$ is shown in the following figure 3.2 and figure 3.3 respectively

Result 3.4 Complement of all complete graph is disconnected, It does not have a dominating set.

Result 3.5. Complement of all complete bipartite graph is disconnected, It does not have a dominating set.

Result 3.6. Complement of a cycle c_n (n < 4) is disconnected. It does not have a dominating set.

Result 3.7. Complement of a cycle c_n ($n \ge 5$) is connected graph. It has a dominating set.

Result 3.8.Complement of path is disconnected, It does not have a dominating set.

Theroem 3.9. For any splitted graph G, $\gamma [[S(G)]^C] = 2$.

RESEARCH PAPER

Proof. Let S(G) besplitted graph of a graph G. Let $[S(G)]^{C}$ be complement of S(G). Let D be a minimal dominating set of $[S(G)]^{C}$. V-D is a domination set of $[S(G)]^{C}$.

Hence γ [[S(G)]^C] = min{ |D|, |V-D|} = min { 2,|V-D|} =2.

Theorem 3.10. γ [[*S*(*G*)]^{*C*}] = P – Δ [[*S*(*G*)]^{*C*}]

Proof. Let S(G) be splitted graph of a graph G. Let $[S(G)]^C$ be complement of S(G). Let v be a vertex of maximum degree $\Delta[[S(G)]^C]$. Then v is adjacent to N(v) vertices such that $\Delta[[S(G)]^C] = N(v)$. Hence V-N(v) is a dominating set.

Thus $\gamma [[S(G)]^C] = |V - N(v)|$ = $P - \Delta [[S(G)]^C]$

Theorem 3.11. δ [[*S*(*G*)]^{*C*}] = P - (Δ [S(G)] +1)

Proof. Let S(G) be splitted graph of a graph G. Let $[S(G)]^{C}$ be complement of S(G). Let v be a vertex of maximum degree inS(G). Then v is adjacent to N(v) vertices ,such that Δ [S(G)] = deg(v). It implies v is a vertex of minimum degree in $[S(G)]^{C}$.

Then $\delta [[S(G)]^{\mathcal{C}}] = P - (\Delta [S(G)] + 1)$

Theorem 3.12. $\Delta [[S(G)]^C] = P - (\delta[S(G)]^{+1})$

Proof. Let S(G) be splitted graph of a graph G. Let $[S(G)]^{C}$ be complement of S(G). Let v be a vertex of minimum degree in S(G). Then v is adjacent to N(v) vertices such that $\delta[S(G)] = deg(v)$. It implies v is a vertex of maximum degree $in[S(G)]^{C}$ of complement of splitted graph,

Then $\Delta [[S(G)]^{C}] = P - (\delta [S(G)] + 1)$

Observation 3.13. $\gamma [[S(G)]^C] \le \{P + 1 - (\delta [[S(G)]^C] - 1) \frac{\Delta [[S(G)]^C}{\delta [[S(G)]^C}\}/2$

Observation 3.14. $\gamma [[S(G)]^{C}] < \{P + 2 - (\delta [[S(G)]^{C}] \}/2$

Observation 3.15. $\gamma [[S(G)]^C] \le \{P + 1 - \delta [[S(G)]^C]\}/2$

Observation

3.16.
$$q < \left\lfloor \frac{1}{2} \quad (P - \gamma [[S(G)]^{C})(P - \gamma [[S(G)]^{C} + 2)] \right\rfloor$$

Theorem 3.17. $\gamma [[S(G)]^C] < P + 1 - \sqrt{1+2q}$

Proof. By observation $3.16, 2q < (P - \gamma[[S(G)]^C])^2 + 2(P - \gamma[[S(G)]^C])$

Adding 1 to both sides $2q + 1 < (P - \gamma [[S(G)]^{C}])^{2} + 2(P - \gamma [[S(G)]^{C}]) + 1$

 $= \left(\left(\begin{array}{cc} P - & \gamma \left[\left[S(G) \right]^C \right] \right) & + 1 \end{array} \right)^2$

Since $(P - \gamma[[S(G)]^C]) \ge 0$ it follows that

$$\sqrt{1+2q} < P - \gamma [[S(G)]^{C}] + 1$$

 $\gamma [[S(G)]^{C}] < P + 1 - \sqrt{1+2q}$

Observation 3.18. $S(P_2) \cong S(P_2)^c$

For example complement of $S(P_2)$ is shown in the following figure 3.19 and igure 3.20

Define 3.21. isomorphism

we define θ : $V(S(P_2) \rightarrow V(S(P_2)^c))$

$$by \begin{pmatrix} v_1 & u_2 & u_1 v_2 \\ u_1^1 & v_1^1 & v_2^1 u_2^1 \end{pmatrix} and$$

we define $\emptyset : E(S(P_2) \to E(S(P_2)^c))$
$$by \begin{pmatrix} e_1 & e_2 e_3 \\ \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \end{pmatrix}$$

$$\varphi_{S(G)}(e_1) = v_1 u_2 , \quad \varphi_{S(G)^c}(\emptyset(e_1)) =$$

$$\varphi_{S(G)^c}(\varepsilon_1) = u_1^1 v_1^1 = \theta(v_1) \theta(u_2)$$

$$\varphi_{S(G)}(e_2) = u_2 u_1 , \quad \varphi_{S(G)^c}(\emptyset(e_2)) =$$

 $\varphi_{S(G)}(e_3) = u_1 v_2 , \qquad \varphi_{S(G)^c}(\emptyset \ (e_3) \) =$ $\varphi_{S(G)^c}(\varepsilon_3) = v_2^1 u_2^1 = \theta(u_1) \ \theta(v_2)$

 (θ, ϕ) is an isomorphism

 $S(P_2) \cong S(P_2)^c$

Note 3.22. No other graph example, wil satisfy the above isomorphism observation 3.18.