Domination of Complement of A Splitted Graphs

KEYWORDS
 Domination, Splitted graph, complement of splitted graphs
 * A.NELLAI MURUGAN
 PG and Research Department of Mathematics V O Chidambaram College, Tuticorin-628008,TN, INDIA, * Corresponding Author
 A.ESAKKIMUTHU
 PG and Research Department of Mathematics V O Chidambaram College, Tuticorin-628008,TN, INDIA

ABSTRACT

Let G be (p, q) graph. A set D of vertices in a complement of any splitted graph $[S(G)]^{C}=(V, E)$ is called a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma\left[[S(G)]^{c}\right]$ of $[S(G)]^{c}$ is minimum cardinality of a domination set of $[S(G)]^{C}$

1. INTRODUCTION

Let G be a (p, q) graph, By a graph, we mean a finite simple and undirected graph. The vertex set and edge set of a graph G denoted are by V (G) and $E(G)$ respectively. Let G be a graph. For each vertex v of a graph G, take a new vertex u. Join u to those vertices of G adjacent to v . The graph thus obtained is called the splitting graph of G. It is denoted by $S(G)$. For a graph G, the splitting graph $S(G)$ is obtained by adding a new vertex v corresponding to each vertex u of G such that $N(u)=N(v)$ and it is denoted by $S(G)$.

2. PRELIMINARIES

Let G be (p, q) graph.A set D of vertices in a complement of any splitted graph $[S(G)]^{C}=$ (V, E) is called a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma\left[[S(G)]^{C}\right]$ of $[S(G)]^{C}$ is minimum cardinality of a domination set of $[S(G)]^{C}$

3.RESULTS

Theorem 3.1. Let $[S(G)]^{C}$ be a Complement of splitted graph. If D is a minimal domination set, then V-D is also a domnating set.

Proof. Let $S(G)$ be a splitted graph. Let $[S(G)]^{C}$ be a Complement of $S(G)$. Let D be a
minimal dominating set of $[S(G)]^{C}$. Suppose V-D is not a dominating set. Then there exists a vertex u such that u is not dominated by any vertex in V-D. u is dominated by atleast one vertex in $\mathrm{D}-\{\mathrm{u}\}$. which is contradicts the minimality of D .Thus every vertex in D is adjacent with atleast one vertex in V-D. Hence V-D is a dominating set.

For example complement of $S\left(P_{2}\right)$ is shown in the following figure 3.2 and figure 3.3 respectively

Result 3.4 Complement of all complete graph is disconnected, It does not have a dominating set.

Result 3.5. Complement of all complete bipartite graph is disconnected, It does not have a dominating set.

Result 3.6. Complement of a cycle $c_{n}(\mathrm{n}<4)$ is disconnected, It does not have a dominating set.

Result 3.7. Complement of a cycle $c_{n}(\mathrm{n} \geq 5)$ is connected graph, It has a dominating set.

Result 3.8.Complement of path is disconnected, It does not have a dominating set.

Theroem 3.9. For any splitted graph G, $\gamma\left[[S(G)]^{C}\right]=2$.

Figure $32 S\left(P_{2}\right)$

Figure $3.3\left[\left(P_{2}\right)\right]^{6}$

Proof. Let $S(G)$ besplitted graph of a graph G. Let $[S(G)]^{C}$ be complement of $\mathrm{S}(\mathrm{G})$. Let D be a minimal dominating set of $[S(G)]^{C}$. V-Dis a domination set of $[S(G)]^{C}$.

Hence,$\gamma\left[[S(G)]^{C}\right]=\min \{|D|,|V-D|\}=\min \{$ $2,|\mathrm{~V}-\mathrm{D}|\}=2$.

Theorem 3.10. $\gamma\left[[S(G)]^{C}\right]=\mathrm{P}-\Delta\left[[S(G)]^{C}\right]$
Proof. Let $S(G)$ be splitted graph of a graph G. Let $[S(G)]^{C}$ be complement of $S(G)$. Let v be a vertex of maximum degree $\Delta\left[[S(G)]^{C}\right]$.Then v is adjacent to $\mathrm{N}(\mathrm{v})$ vertices such that $\Delta\left[[S(G)]^{C}\right.$ $]=\mathrm{N}(\mathrm{v})$. Hence $\mathrm{V}-\mathrm{N}(\mathrm{v})$ is a dominating set.

Thus $\gamma\left[[S(G)]^{C}\right]=|\mathrm{V}-\mathrm{N}(\mathrm{v})|$

$$
=\mathrm{P}-\Delta\left[[S(G)]^{c}\right]
$$

Theorem 3.11. $\delta\left[[S(G)]^{C}\right]=\mathrm{P}-(\Delta[\mathrm{S}(\mathrm{G})]$ +1)

Proof. Let $\mathrm{S}(\mathrm{G})$ be splitted graph of a graph G . Let $[S(G)]^{C}$ be complement of $S(G)$. Let v be a vertex of maximum degree inS(G).Then v is adjacent to $\mathrm{N}(\mathrm{v})$ vertices, such that $\Delta[\mathrm{S}(\mathrm{G})]=$ $\operatorname{deg}(\mathrm{v})$. It implies v is a vertex of minimum degree in $[S(G)]^{C}$.

Then $\delta\left[[S(G)]^{C}\right]=\mathrm{P}-(\Delta[\mathrm{S}(\mathrm{G})]+1)$
Theorem 3.12. $\Delta\left[[S(G)]^{C}\right]=\mathrm{P}-(\delta[\mathrm{S}(\mathrm{G})]$ +1)

Proof. Let $S(G)$ be splitted graph of a graph G. Let $[S(G)]^{C}$ be complement of $S(G)$. Let v be a vertex of minimum degree in $S(G)$.Then v is adjacent to $\mathrm{N}(\mathrm{v})$ vertices such that $\delta[\mathrm{S}(\mathrm{G})]=$ $\operatorname{deg}(\mathrm{v})$. It implies v is a vertex of maximum
degreein $[S(G)]^{C}$ of complement of splitted graph,

Then $\Delta\left[[S(G)]^{C}\right]=\mathrm{P}-(\delta[\mathrm{S}(\mathrm{G})]+1)$
Observation 3.13. $\gamma\left[[S(G)]^{C}\right] \leq$
$\left\{\mathrm{P}+1-\left(\delta\left[[S(G)]^{C}\right]-1\right) \frac{\Delta\left[[S(G)]^{C}\right.}{\delta\left[[S(G)]^{C}\right.}\right\} / 2$
Observation 3.14. $\gamma\left[[S(G)]^{C}\right]<$ $\left\{\mathrm{P}+2-\left(\delta\left[[S(G)]^{C}\right]\right\} / 2\right.$

Observation 3.15. $\gamma\left[[S(G)]^{C}\right] \leq$ $\left\{\mathrm{P}+1-\delta\left[[S(G)]^{C}\right]\right\} / 2$

Observation

3.16. $q<$
$\left[\frac{1}{2} \quad\left(P-\gamma\left[[S(G)]^{C}\right)\left(P-\gamma\left[[S(G)]^{C}+2\right)\right]\right.\right.$
Theorem 3.17. $\gamma\left[[S(G)]^{C}\right]<P+1-$ $\sqrt{1+2 q}$

Proof. By observation 3.16,2q<(P-

$$
\left.\gamma\left[[S(G)]^{C}\right]\right)^{2}+2\left(P-\gamma\left[[S(G)]^{C}\right]\right)
$$

Adding 1 to both sides $2 q+1<$
$\left(P-\gamma\left[[S(G)]^{C}\right]\right)^{2}+$
$2\left(P-\gamma\left[[S(G)]^{C}\right]\right)+1$
$=\left(\left(P-\gamma\left[[S(G)]^{C}\right]\right)+1\right)^{2}$
Since $\left(P-\quad \gamma\left[[S(G)]^{C}\right]\right) \geq 0$ it follows that

$$
\begin{aligned}
& \sqrt{1+2 q}<P-\gamma\left[[S(G)]^{C}\right]+1 \\
& \gamma\left[[S(G)]^{C}\right]<P+1-\sqrt{1+2 q}
\end{aligned}
$$

Observation 3.18. $S\left(P_{2}\right) \cong S\left(P_{2}\right)^{c}$
For examplecomplement of $\left(P_{2}\right)$ is shown in the following figure 3.19 and igure 3.20

Define 3.21.isomorphism
we define $\theta: V\left(S\left(P_{2}\right) \rightarrow V\left(S\left(P_{2}\right)^{c}\right)\right.$
$\operatorname{by}\left(\begin{array}{ccc}v_{1} & u_{2} & u_{1} v_{2} \\ u_{1}^{1} & v_{1}^{1} & v_{2}^{1} u_{2}^{1}\end{array}\right)$ and
we define $\emptyset: \quad E\left(S\left(P_{2}\right) \rightarrow E\left(S\left(P_{2}\right)^{c}\right)\right.$
$\operatorname{by}\left(\begin{array}{cc}e_{1} & e_{2} e_{3} \\ \varepsilon_{1} & \varepsilon_{2}\end{array} \varepsilon_{3}\right)$
$\varphi_{S(G)}\left(e_{1}\right)=v_{1} u_{2} \quad, \quad \varphi_{S(G)^{c}}\left(\emptyset\left(e_{1}\right)\right)=$
$\varphi_{S(G)^{c}}\left(\varepsilon_{1}\right)=u_{1}^{1} v_{1}^{1}=\theta\left(v_{1}\right) \theta\left(u_{2}\right)$
$\varphi_{S(G)}\left(e_{2}\right)=u_{2} u_{1} \quad, \quad \varphi_{S(G)^{c}}\left(\emptyset\left(e_{2}\right)\right)=$

Figure $3.195\left(P_{2}\right)$

$$
\varphi_{S(G)^{c}}\left(\varepsilon_{2}\right)=v_{1}^{1} v_{2}^{1}=\theta\left(u_{2}\right) \theta\left(u_{1}\right)
$$

$$
\begin{gathered}
\varphi_{S(G)}\left(e_{3}\right)=u_{1} v_{2} \quad, \quad \varphi_{S(G)^{c}}\left(\emptyset\left(e_{3}\right)\right)= \\
\varphi_{S(G)^{c}}\left(\varepsilon_{3}\right)=v_{2}^{1} u_{2}^{1}=\theta\left(u_{1}\right) \theta\left(v_{2}\right)
\end{gathered}
$$

(θ, \varnothing) is an isomorphism
$S\left(P_{2}\right) \cong S\left(P_{2}\right)^{c}$
Note 3.22. No other graph example, wil satisfy the above isomorphism observation 3.18.

