
INDIAN JOURNAL OF APPLIED RESEARCH X 349

Volume : 4 | Issue : 4 | Apr 2014 | ISSN - 2249-555XRESEARCH PAPER Computer Science

A Survey on Routing Algorithms for Efficient and
Optimised Railway Scheduling

Karan Mitra Nishikant Mokashi Prasad Patil
KJ College of Engineering and
Management Research, Pune

KJ College of Engineering and
Management Research, Pune

KJ College of Engineering and
Management Research, Pune

Rohan Navgire Manali Vashi
KJ College of Engineering and Management Research,

Pune
KJ College of Engineering and Management Research,

Pune

KEYWORDS Metro, Routing, Pathfinding, Algorithms

ABSTRACT Metro Rail Systems are getting more and more popular in most countries these days. Almost all developing
country is working on setting up major metro systems in all their best cities. Advantages of the metro systems

are enormous, lead to a substantial increase in the economic as well as financial up gradation of the city and most of all
provides a fast, cheap and reliable method of transportation to the residents of the city. With all these advantages the high
initial investments and the years of construction are totally covered up. During the inception and establishment of such a
system comes a crucial time of deciding the schedules as well as the number of stations and trains that shall be running and
their timings. Routing algorithms came into being due to some of these such railway scheduling problems. In this paper, we
survey the various formats and types of routing algorithms to decide the most suitable and optimal paths.

[1] INTRODUCTION
Train companies face many algorithmically challenging ques-
tions. The decisions about the number of stations, trains as
well as their timings are crucial since the entire functionality
of the systems depends upon it. In this paper, we shall con-
sider some of the existing algorithms that have been used
before for routing as well as scheduling trains as well as other
transportation services to enlist and compare the parameters
that shall be important for the urban railways a.k.a. Metros
in specific.

Since the advent of the railway systems, many routing algo-
rithms have been used to schedule the trains and decide the
paths in the cities where the trains shall run. Along with that,
the scheduling is also done which primarily decides the run-
ning time of the trains to the dot. Metro systems have a slight
advantage in this sector of planning over the traditional rail
systems since the metros have pre-decided running systems,
i.e. once trains, their routes and their timings are set up, they
are rarely changed.[1]

Metro Systems, though also hold some disadvantages over
regular train systems in the way that it provides flexibility to
the commuter to micro-plan his/her travel, i.e. the person
travelling is allowed to choose the path that they wish to take
while travelling from a source to a destination. The expecta-
tion of a traveller from a routing interface is to provide all the
possible routes once these two end points are clearly identi-
fied. This is not the case in intercity as well as interstate con-
necting railway systems in which mostly the trains have very
fixed routes and the maximum amount of flexibility that is
provided to the traveller is for them to check the stops in the
middle and in that way, choose the correct and appropriate
train. Thus, in metro systems, the routes have to be dynami-
cally decided by the application which is housing the routing
algorithm.[1][2]

[2] PRE-EXISTING SYSTEMS
After establishing the fact that even though metros use a
static system of time-tabling as well as planning of trains and
stations, the dynamicity of the working of the routing algo-
rithm comes into play when the actual real-time route of a
commuter needs to be calculated and shown back on the
interface so as to enable the user to make an informed deci-

sion. This provision of flexibility adds a level of complexity
that is vital in the routing algorithms.[2]

The simplest approach towards routing and/or planning
paths would be the path algorithms such as Djkistra’s Short-
est Path as well as path algorithms may befit the context of
planning urban railway routing but it does not practically
hold true since in shortest path algorithms the most cutting
advantage is that the most important parameter is singular,
which is time or distance, both of which are directly propor-
tional. We shall now take a look at some of the popular path
algorithms and routing algorithms in detail. We have con-
sidered some algorithms which works on nodes and paths
which can be analogous to routing of packets between given
routers which can be taken as a general case of trains moving
between stations since in those cases also there is a source
and a sink between the trains and the path logic still holds.

1. Djikstra’s shortest path algorithm -
This algorithm provides a simple logical method of checking
all possible paths leading from one end point to the other.
The algorithm starts calculating shortest paths by stepping
from one level of intermediate stops to the other till the time
it reaches the other end point, at each level, calculating the
time and distance travelled and comparing it with alternative
routes that were missed in the earlier steps. It is a general
case of the BFS algorithm. It works on the concept of CSF i.e.
Cost-so-far value a.k.a. G-value. It assigns costs to every ad-
jacent vertex starting from the initial node and then moves on
to the next by accumulating the cost at each stop. A vertex
is assigned a new cost if it is re-visited and if the new cost is
lower than the previous cost. [5]

2. The travelling salesman problem (TSP) -
In this case a single vehicle has to visit a set of nodes exactly
once before returning to its starting position. Such problems
implicitly assume that the sum total of demand for services
at the nodes is less than the capacity of the vehicle, or al-
ternatively the capacity of the vehicle is not material to the
problem. In this case optimality of a route is measured in
terms of minimum route length. Practical examples of the
TSP include planning the route for a courier who typically
has to visit certain homes / houses in an area; other examples
include that of developing a repairman’s route, or that of a

350 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 4 | Issue : 4 | Apr 2014 | ISSN - 2249-555XRESEARCH PAPER

doctor making house calls. More importantly the TSP often
forms a sub-problem of other vehicle routing problems. [8]

3. Distance Vector Algorithm -
Distance Vector Protocol broadcasts its complete routing ta-
ble periodically. Examples of Distance Vector Protocols are
RIP, BGP [Border Gateway Protocol], IGRP, EIGRP [Enhanced
IGRP].

A distance-vector routing protocol is one of the two major
classes of routing protocols used in packet-switched net-
works for computer communications, the other major class
being the link state protocol. A distance vector routing pro-
tocol uses the Bellman-Ford algorithm to calculate paths.[4]
[5]

A distance vector routing protocol requires that a router in-
forms its neighbours of topology changes periodically and,
in some cases, when a change is detected in the topology
of a network.

The three key features for this routing is -
i. Sharing knowledge about the entire Network:
Each router sends all of its collected knowledge about the
network to its neighbours.

ii. Sharing only with neighbours:
Each router sends its collected knowledge about the network
to its neighbour routers which directly connected. It sends
whatever it has knowledge about the network through all of
its ports.

iii.Sharing at regular intervals:
Each router periodically shares its knowledge about the en-
tire network with its neighbours.

Sharing Information:
A router can share its knowledge about network to its neigh-
bours.

The knowledge may be collected by itself or otherwise
shared from other routers.
Routing Table:
Distance vector routing information may be, Network ID,
cost and NextHop. These three essentials need to form a
Distance vector’s routing table.

4. Link State Algorithm -
A Link-state routing is a concept used in routing of packet-
switched networks in computer communications. Link-state
routing works by having the routers tell every router on the
network about its closest neighbours. The entire routing ta-
ble is not distributed from any router, only the part of the
table containing its neighbours.

The basic concept of link-state routing is that every node
constructs a map of the connectivity of the network, in the
form of graph. Using that map of connectivity graph, each
node independently calculates the best next hop from it for
every possible destination in the network. The collection of
best next hops forms the Routing Table for the node.

Contrast with Distance Vector:
Distance vector, which work by having each node share its
routing table with its neighbours. But, in link state protocol,
the only information passed between the nodes is informa-
tion used to construct the connectivity maps.

Optimized link state routing protocol is its extended version
which is used with wireless mesh networks.

The key features of this routing include all the nodes know-
ing the state of the other nodes which is usually done by
one of the nodes via a process called flooding in which one
router sends all of its data to every other router, like a broad-

cast. Flooding is also done every time the data changes or
is modified.

5. K shortest path routing -
There are many cases in which it is vital to have more than
one path between two nodes in a given network. Sometimes
different paths need to be found due to some additional con-
straints. One simple method is to use any basic path find-
ing algorithm and then extend it to include other alternative
paths. The K Shortest Path routing algorithm is a generalisa-
tion of the shortest path problem. Its primary task, like the
other algorithms is to find the shortest path, but, in addition
to that, it also finds a user-specified K number of shortest
paths in the order of increasing cost. The problem can be
restricted to have the K shortest path without loops (loopless
K shortest path) or with loop. The running time complexity is
O(Kn(m + n log n)). m represents the number of edges and n
is the number of vertices. [5]

6. A * path finding algorithm -
A* is a computer path finding algorithm which is a combina-
tion of two different types of algorithms, namely, incremental
and heuristic search algorithms. Incremental searches work
in increasing steps in which the output of the previous step
is used as the input to the next step. Heuristic algorithms
are those that learn from previous iterations and attempt to
identify paths that should not be taken in the proceeding
steps. This ensures that the obvious paths that are definitely
incorrect are discarded from consideration early on and com-
putation time is not wasted on them later on. The domain
of usage of such algorithms are those in which the entire
scenario may not be known before hand. Heuristic searches
have been studied since the late 1960s. There are certain
search problems, known as dynamic path planning prob-
lems, in which paths are to be found repeatedly since the
graph, costs and vertices may change over time. The time
complexity of A* depends on the heuristic. In the worst case,
the number of nodes expanded is exponential in the length
of the solution (the shortest path), but it is polynomial when
the search space is a tree, there is a single goal state, and the
heuristic function h meets the following condition:

|h(x) - h^*(x)| = O(\log h^*(x))
where h* is the optimal heuristic, the exact cost to get from x
to the goal. In other words, the error of h will not grow faster
than the logarithm of the “perfect heuristic” h* that returns
the true distance from x to the goal. [4][5]

7. Iterative Deepening A* Algorithm -
The Iterative Deepening A* (IDA) was presented in 1985. It is
a memory optimal algorithm and an acceptable alternative to
the A* algorithm. It is quite similar to the Depth First Search
(DFS), and the algorithm itself can simply be represented as
a series of DFSs from the start node and with an increasing
depth till a particular threshold value. These searched are car-
ried out recursively which ensures that every search enhances
the effectiveness of each search. The algorithm is limited by
using an initial threshold value and all the nodes are searched
by always checking the threshold value before the search is
applied. This ensures that no path will be found more than a
specified minimum heuristically predicted cost of the search.
It is an effective algorithm since it is easy to implement and
to understand since it does not involve any major complex
steps, just simple depth first searches. Disadvantages include
the fact that it is effective only in a limited scope of problems
and thus, is not a more generalised algorithm. [4]

8. Simplified Memory-Bounded Algorithm -
The SMA algorithm is presented as an improvement to the
Memory bounded search algorithm. In the MA algorithm, a
fixed buffer is used to store favourable nodes which ensures
that node re-exploration is not required. The drawback of this
method, even though it saves up on a lot of search time, is
that when the algorithm runs out of buffer space, the least
favourable node is taken away from the buffer, which some-

INDIAN JOURNAL OF APPLIED RESEARCH X 351

Volume : 4 | Issue : 4 | Apr 2014 | ISSN - 2249-555XRESEARCH PAPER

times leads to memory losses. To reduce the degree of re-ex-
ploration, a node estimated backup system is implemented
to try and counted this loss of information. The SMA* backup
system for nodes propagates the estimated cost of the suc-
cessor to the successor’s parent and recursively till the root.
If a successor’s parent has a favourable cost backup value,
then it is kept in the list rather than taken away which facili-
tates node re-exploration. With this advantage in mind, there
appears to be an obvious drawback in this algorithm in the
measure of complexity since now every backup list item is
stored as a binary tree of binary trees. Thus, time and space
complexity both increase since even the time to go through
such a structure will be more as compared to a simple list as
in the case of A*. [4]

9. Fringe Search -
Similar to the similar memory-bounded algorithm is cancel-
ling the node re-exploration limitations of the of MA, the
fringe search is made as an enhancement to the IDA*. The
basic difference between the two that defines the working
of the fringe search lies in the working of the IDA. In IDA,
the recursive DFS iterations require that the subsequent DFS
starts from the root or the initial node which brings about the
drawback of certain nodes always being re-explored. Also,
the number of nodes re-explored constantly keeps increasing
as the iterations advance.

In order to overcome this limitation, the fringe search allows
the storage of the end of each recursive cycle such that the
next cycle will start from this previously stored stage. This
ensures that almost no nodes are re-explored. Fringe search
works in a very simple manner, keeping track of two lists,
namely the “now” and the “later” lists. As the name sug-
gests, the former list keeps tracks of the nodes that are to
be explored during the current search and the latter list of
the nodes that will be explored in the subsequent searches.
Both the lists are updated during each iteration, thereby giv-
ing way to a threshold limited faster way of searching using
DFSs. [4]

10. Lifelong Planning A* Algorithm -
D* lite algorithm, which can be considered as the basis of
most dynamic environment scoped search algorithms, is a
modified, backwards version of LPA*.

LPA* is an incremental version of the A* algorithm that reuses
information from previous searches across search iterations,
also known as the heuristic method of algorithm operation.
Heuristic algorithms are used when we require the algorithms
to function repeatedly changing environment since such al-
gorithms keep track of the favourable and non-favourable
nodes that are encountered in the first few workings of the
algorithm. Thus, in the subsequent usages, unfavourable
nodes are avoided and favourable paths are considered.

The backwards concept of the LPA* algorithm can be under-
stood by considering the local consistencies of a node. If a
node is locally consistent when its G value if equal to its RHS
value. This means that the cost required to reach that node
since the starting of the iteration should be the minimum
cost required to reach that node from the start node. Thus,
it comes to say that if all the nodes in a working of algorithm
are locally consistent, then one can simply find any path by
working these G values backwards from the destination node
till we reach the source node and adding up all the G values
on the way overlapping the common paths thereby giving
us the shortest cost path. This is the overall working of the
Lifelong Planning Algorithm. [4][5]

[3] ROUTING MEASUREMENT PARAMETERS -
Parameters that may be used for assessing the efficiency of a
routing algorithm may be many in number but they are over-
lapping as well as contradictory in a lot of situations. Thus, in
order to correctly analyse an algorithm, we need to ensure
the completion of two tasks -

Based upon the study of the environment and implementa-
tion, assess the parameters which shall be used in the re-
quired situation. Also, check the inter-relationships between
the parameters, since as mentioned before, there are param-
eters which are contradictory to each other. Only those pa-
rameters which result from these steps should be considered
should be taken in the analysis, as it will give a clear idea
about the usage of the algorithm and its overall effectiveness
can be clearly considered and also compared to other similar
algorithms.

By referring paper [5] , the following parameters may be
considered for assessing a routing algorithm:
•	 Time	 Complexity	 Time	 complexity	 takes	 into	 account	

the number of repetitions, time taken to execute certain
complex statements etc. Time complexity can be taken
out in different manners such as lower bounds, upper
bounds also in order to analyse the minimum or maxi-
mum time taken by an algorithm to execute.

•	 Space	Complexity	-	Space	Complexity	of	an	algorithm	is	
total space taken by the algorithm with respect to the in-
put size. Space complexity includes both Auxiliary space
and space used by input. It takes into account the data
structures, their complexities and storage mechanisms
required for accessing and manipulating data items. It
is important in almost all situations since an excessive
space complexity puts load on the system as well as the
processor, thereby increasing cost and maintenance.

•	 Re-exploration	 of	Nodes	 -	 As	 seen	 in	 the	 above	 com-
parative analysis of the nodes, specific to path finding
algorithms, algorithms require for some nodes to be
processed again in order to check for a different path
or a lower cost route. This re-exploration requires that a
memory space is also dedicated to it, like a buffer, so that
a track of the nodes can be kept in order to determine
which ones are favourable and which are not.

•	 Speed	of	path	recalculation	In	order	to	increase	the	ef-
fectiveness of an algorithms, they are designed in a man-
ner in which they can handle this recalculation faster. The
measure of this increase in speed for re-exploration is
maintained by this parameter.

•	 Type	of	Movement	through	graph	-	Algorithms	may	work	
very differently. Their types of movements are checked to
compare algorithms which are working a basically differ-
ent concepts. Some may compare neighbouring nodes
and try to find a path till then, others work on edge basis
or angle basis.

•	 Ease	of	 Implementation	 -	 Implementation	simply	 refers	
to converting the algorithm into a application form us-
ing some programming language. Implementation also
refers to the ability for the algorithm to adapt to most
situations and environments. There are some algorithms
which are easily implementable to some environments
where unsuitable for others.

•	 Scalability	-	Specific	to	path	finding	algorithms,	its	gen-
eralisation can be determined by observing its scal-
ability. Scalability refers to the ability of an algorithm to
bear with changes to the nodes. If we were to increase
or decrease the nodes in a given scenario, the adaptive
mechanisms in an algorithm come into play. Increasing
of nodes can be referred to as up-scaling and decreas-
ing of nodes is known as down-scaling. This scaling is
considered up to a certain threshold limit, i.e. we do not
expect any algorithm to ever be infinitely scalable. Only
practically applicable values of scalability are considered.
If an algorithm can morph into a form which can manage
to handle these changes, it is referred to as a scalable
algorithm, otherwise not.

•	 Failure	of	Nodes	-	Failure	of	nodes	is	a	more	specialised	

352 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 4 | Issue : 4 | Apr 2014 | ISSN - 2249-555XRESEARCH PAPER

concept of scalability. If one or more nodes tend to not
be part of the equation anymore, some algorithms tend
to fail at that point rather than adjust to the changes. The
difference between down-scaling and failure of nodes is
that in down-scaling the nodes are removed from con-
sideration itself, but in failure the nodes are there in the
system but cannot be used as part of the solution

[4] COMPARITIVE ANALYSIS -
The choice of an algorithm depends a lot on the architec-
ture and the circumstances on which it is applied. Djkistra’s
algorithm is the easiest to implement and to apply since it re-
quires minimal coding and is applicable to most situations as
it is a very basic application algorithm. However, it does not
take into account failure of one of the nodes or paths and is
impervious to scalability changes. The travelling salesperson
problem is a very specific algorithm which has a lot of pre-
defined conditions such as the cyclic formation of the travel
as well as the hardbound condition that all the nodes have
to be visited. This limits its application scope by a significant
amount. Moreover, the time complexity of this algorithm is
of the kind O(n2n) which means that if in any case, more sta-
tions are added then the time taken will increase by a huge
amount.

Distance vector–based routing protocols are simple router
advertisement processes that are easy to understand. Be-
tween the size of the routing table and the high overhead,
distance vector–based routing protocols do not scale well to
large and very large internetworks. Link state protocols on
the other hand, require more memory and processor power
than distance vector protocols.

Thus, we can conclude that when the number of stations and
the paths are pre-decided and scalability is not an issue, Djik-
stra’s or TSP can be used to a certain level. When fail-safe
systems and a more dynamic level of planning is required,
distance vector and link state routing is used. Within them,
link state routing is the more efficient algorithm since its only
limitation is the fact that it requires more resources in the
form of memory and processing power which can be easily
managed and does not prove to be a hindrance in the overall
efficiency of the algorithm.[2][4][5]

Considering properties applicable to adaptive meshes, re-
planning, re-exploration as well as cost changes, D* algo-
rithm stands out as the simplest and most effective algorithm.

Parameter/
Algorithm DJKISTRA TSP DISTANCE

VECTOR
LINK
STATE

Implemen-
tation Easy Easy Relatively

tougher
Rela-
tively
tougher

Scalability Not scal-
able

Very
limited
scaling

Easily scalable Easily
scalable

Failure of
Nodes

Not con-
sidered

Causes
overall
failure

Re-routing is
required

Re-
routing
is re-
quired

Information
of Topology

Not
known to
all nodes

Known to
traveller
but not
to each
node

Not known to
all nodes

Known
to all
nodes
before
routing
com-
mences

Time Com-
plexity O(n2) O(n2n) O(d=Network

diameter)

TABLE 1 Comparison between simple path finding meth-
ods

TABLE 2 Comparisons between path finding algorithms [5]

ALGO-
RITHM ADVANTAGES DISADVAN-

TAGES
LIMITA-
TIONS (if
any)

Djikstra’s

•	 Simple	and	Easy	
to Implement
•	 Complete	and	
Optimal
•	 Moderate	Time	
& Space Complexity

 Excess node
re-exploration
 Slow recalcu-
lation
 Inability to
resume after
failure of nodes

Not
scalable.
Com-
plexities
increase
drasti-
cally upon
increasing
nodes

A*

•	 Heuristic	Algo-
rithm
•	 Moderate	Time	
& Space Complexity
•	 Iterative	and	
Incremental

 Excess node
re-exploration
 Slow recalcu-
lation
 Inability to
resume after
failure of nodes

D* Lite

•	 Simpler	and	
easier than A* or D*
•	 Backwards	plan-
ning
•	 Adaptable	to	
Dynamic environ-
ments

 Limited to
situations
 Moderate
speed

LPA*

•	 Iterative	and	
Incremental
•	 Quick	path	recal-
culation
•	 Previous	as	well	
as look-ahead costs
are considered

 Repeated
steps
 Recalculation
and Re-explora-
tion

It uses
DFSs to
search,
so scope
of DFS is
carried
forward

SMA

 Decreased node
re-exploration
 Faster working
than all predeces-
sors
 Efficient memory
management

 Excessive
data structure
keeping
 Increased
space complex-
ity

Fringe
Search

•	 High	level	of	
node backup
•	 Very	less	re-
exploration
•	 Relatively	faster	
than most searches

TABLE 3 : Advantages, Disadvantages and Limitations of
Path Finding and Routing Algorithms[4][5][6][8][9]

[5] CATEGORISATION OF ALGORITHMS -
Using the measurement parameters as the base, we can cat-
egorise the path finding algorithms into certain types. These
types help us choose the correct algorithm for the correct
type of usage and implementation.

The following categories can be considered -
•	 Iterative	/	Non	Iterative	Algorithms	-	These	are	algorithms	

which run on loops, iterations and propagate information
through every iteration which helps in deciding favour-
able and unfavourable paths which eventually leads to
optimal solutions. Eg. Fringe Search, Iterative Deepening
Algorithm etc.

•	 Incremental	 /	Non	 Incremental	Algorithms	 	 Incremental	
algorithms are those which accumulate information with
each run or iteration of the algorithm. Accumulation of
information leads to effective comparison between all
the data leading to optimum solutions. Eg. LPA* etc.

INDIAN JOURNAL OF APPLIED RESEARCH X 353

Volume : 4 | Issue : 4 | Apr 2014 | ISSN - 2249-555XRESEARCH PAPER

REFERENCE [1] IEEE 2012 Android Suburban Railway Ticketing with GPS as Ticket Checker (ICACCCT). | [2] Emerging Trend in Using Smartphone Technology
for Transportation Research | [3] Android App Development with Java Essential Training –www.lynda.com | [4] Video Game Pathfinding and

Improvements to Discrete Search on Grid-Based Maps by Bobby Anguelov | [5] Pathfinding Algorithms, A Literature Survey by Daanyaal du Toit | [6] Scheduling Freight
Trains Traveling on Complex Networks by SHI MU and MAGED DESSOUKY | [7] Train Routing Algorithms: Concepts, Design Choices, and Practical by Luzi Andereggy
Stephan Eidenbenz | [8] A Survey on Shortest Path Routing Algorithms for Public Transport Travel by S.Meena Kumari & Dr.N.Geethanjali | [9] Computer Networks,
Electronics and Computer Science Department, University of Southampton

•	 Heuristic	 /	 Non	 Heuristic	 Algorithms	 -	 Heuristic	 algo-
rithms are used when we require the algorithms to func-
tion repeatedly changing environment since such algo-
rithms keep track of the favourable and non-favourable
nodes that are encountered in the first few workings of
the algorithm. Thus, in the subsequent usages, unfavour-
able nodes are avoided and favourable paths are consid-
ered. Thus, in other words, it can be said that heuristic al-
gorithms learn from their previous iterations and improve
themselves in successive iterations. Eg. A* etc.

Heuristic algorithms can further be of 3 types:
 Manhattan
 Euclidean
 Chebyshev

•	 Discrete	Search	/	Continuous	Search	Algorithms	-	Search	
algorithms can work in two kinds of environments, one in
which the entire path and scenario is known to the algo-
rithm and an optimal path has to be found given these
boundary conditions as input. For such environments,
discrete search algorithms are applied since they work
on a complete set of inputs only. On the other hand, con-
tinuous search algorithms are given a set of initial condi-
tions and thresholds and all the other inputs are entered
or are encountered (usually by sensors) and the algo-
rithm works with this new set. This calls for a high level of
adaptability and readjustment mechanisms that need to
be available in the algorithm since they will always be in
play and will control the working and optimality of the al-
gorithm. Examples of discrete search algorithms include
A*, D* etc. whereas the examples of continuous search
algorithms are LPA*, D* Lite etc.

•	 Edge	-	Based	/	Any	-	Angle	Based	Algorithm	-	Basic	algo-
rithms such as Djikstra’s or A* algorithms all fall under the
edge based algorithm category since they work on edges
joining nodes. Paths are found all on the basis of addition
of costs of optimal edges between the nodes in the cho-
sen optimal path. Any Angle path planning algorithms
are those which consider the angle between the start and
the end node in a 2 dimensional block environment and
work towards keeping that angle optimal so that mini-
mum number of nodes are used thereby decreasing the
cost of the path searching and planning. Djikstra’s and A*
fall under edge-base category and Theta* and Field D*
fall under Any-Angle path planning type.

[6] RESULTS -
Distance Vector Routing

[9] (Reference)
Link State Routing

[9] (Reference)

[5] (Reference)
An example of D* lite iterative search. Having found a path
KHDBA, the path has been traversed to D, where the neigh-
bouring vertices and D are processed for new information.
The path may be altered as the environment changes.

[5] (Reference)
An example of a path created by Field D*, displaying any-
angle movement through individual grid blocks

[7] CONCLUSION -
Djkistra's is not suitable for more number of nodes. A* suffers
from slow recalculation whereas in LPA* greater recalcula-
tion is required. There is need for an algorithm with works for
more numbers of nodes effectively with less time complexity
and space complexities and provides accurate results.

An intermediate apth gener-
ated by A*. The dotted line
represents the heuristic esti-
mating the distance of the
goal; in this case, the Euclid-
ian distance heuristic.

