

Excess Isentropic Compressibilities, Excess Molar Volumes, Refractive Index Deviations of Diethyl Carbonate + Nitrobenzene, + Chlorobenzene, and + Ethylbenzene at T = (293.25, 303.15, 313.15 and 323.15) K

**KEYWORDS** 

speed of sound, refractive index, isentropic compressibility, diethyl carbonate

| B. Sudhamsa                     | M. Sarath Babu                  | K. Narendra                        |  |  |
|---------------------------------|---------------------------------|------------------------------------|--|--|
| Department of Chemistry,        | Department of Chemistry,        | Department of Physics,             |  |  |
| MIC College of Technology,      |                                 | V.R.Siddhartha Engineering College |  |  |
| Kanchikacharla, Andhra Pradesh, | Kanchikacharla, Andhra Pradesh, | (Autonomous), Vijayawada, Andhra   |  |  |
| India                           | India                           | Pradesh, India                     |  |  |

Densities, speeds of sound and refractive indices of diethyl carbonate + nitrobenzene, + chlorobenzene, and + ethylbenzene have been measured at (293.25, 303.15, 313.15 and 323.15) K over the entire composition range and at atmospheric pressure. From these measurements, excess molar isentropic compressibilities (), excess molar volumes (VE) and refractive index deviations (\( \D \)) were calculated. The results were fitted to the Redlich-Kister polynomial equation in order to derive the adjustable parameters and standard deviations to study the nature of the molecular interactions in the mixtures.

investigating **Introduction:-** For the properties of pure components and the nature of intermolecular interactions between the components of liquid mixtures, data of physical properties such as density, speed of sound and refractive index of pure components and their binary mixtures are being increasingly used as tools [1]. For understanding the molecular interactions, excess thermodynamic parameters used important parameters. Diethyl carbonate (DEC) is a solvent of both extraction and reaction used in industries such agrochemicals, pharmaceuticals and hydrocarbon refinery. It can make dyeing uniformity and increase fading against sunshine. DEC was also proposed as lubricant new refrigerant, hydrofluorocarbon and as paint remover in the paint industry.

Benzene derivatives such as nitrobenzene (NB), chlorobenzene (CB) and ethylbenzene (EB) are important liquids which find variety of applications such as

solvent for lacquers, oils and resins. Several researchers [2-5] studied the molecular interactions in binary liquid mixtures containing diethyl carbonate by measuring the values of density, speed of sound and refractive index. As a part of the experimental investigation of the excess thermodynamic properties of industrially important liquids like diethyl carbonate, here we report the densities, speeds of sound, refractive indices, excess molar isentropic compressibilities  $(K_s^E)$ , excess molar volumes (VE) and refractive index deviations ( $\Delta n_D$ ) for binary mixtures of the above mentioned systems at (293.15, 303.15, 313.15 and 323.15) K over the entire composition range.

## Experimental Procedure:-

All the chemicals used in this study were purchased from Aldrich Chemicals Company. According to the manufacturer, the purities of these compounds were >99%. The purity of the samples was checked by comparing the observed values of densities, speeds of sound and refractive

indices with those reported in literature and were used as such without further purification. The measured values are included in table 1 along with the values reported in literature.

Anton Paar DSA 5000 density and sound analyser provided with two Pt 100 platinum thermometer was used for measuring the densities and speeds of sound of pure liquids and liquid mixtures. The density is extremely sensitive to temperature, so the apparatus was controlled to  $\pm 0.001$  K by a built-in solid state thermostat. The stated accuracy in density and speed of sound are  $5 \times 10^{-3}$  kgm<sup>-3</sup> and 0.5 m/s respectively.

The binary liquid mixtures were prepared by mixing known masses of pure liquids in airtight-stoppered bottles to minimize evaporation losses. The weighings were done with an electronic balance with a precision of  $\pm 0.01$ mg.

Refractive indices of the mixtures at the sodium D-line were determined with an Abbemat heavy duty line refractometer

equipped with a circulating water bath permitting to maintain the sample at constant temperature to within  $\pm 0.002$ K. The calibrates instrument was bv measuring the refractive index ofdeionised water. The sample support was rinsed with acetone and dried with a paper towel. The stated accuracy in refractive index is +0 00002 nD

## Results and discussion:-

Density, speed of sound and refractive index of pure DEC, NB, CB and EB were measured at (293.15, 303.15, 313.15 and 323.15) K and at atmospheric pressure. The same conditions of pressure and temperature applied in the were determination of experimental density, speed of sound and refractive index of the three binary systems studied in this work: (DEC+NB), (DEC+CB) and (DEC+EB). Table 2 lists the experimental values of densities, p, speeds of sound, u, and

refractive indices, n<sub>D</sub>, of binary mixtures

of diethyl carbonate + nitro benzene,

chloro benzene, and ethyl benzene at different temperatures.

The values of speed of sound, u, and density,  $\rho$ , were used to calculate the isentropic compressibility,  $k_s$ , by using the following relation,

$$k_s = u^{-2} \rho^{-1}$$
 ---(1)

The excess isentropic compressibility,  $\mathbf{k}_{\circ}^{E} = \mathbf{k}_{\circ} - \mathbf{k}_{\circ}^{id}$  ---(2)

k<sub>s</sub><sup>id</sup> was calculated from the relations

$$k_{s}^{id} = \sum_{i=1}^{2} \phi_{i} [k_{s,i} + TV_{i}(\alpha_{i}^{2}) / C_{p,i}] - \{T(\sum_{i=1}^{2} x_{i} V_{i}) (\phi_{i} \alpha_{i})^{2} / \sum_{i=1}^{2} x_{i} C_{p,i}\} ---(3)$$

and 
$$\phi_i = x_i V_i / (\sum_{i=1}^2 x_i V_i)$$
 --- (4)

where  $\phi_i$  is the volume fraction,  $V_i$  is the molar volume,  $\alpha_i$  is the isobaric thermal expansion coefficient (calculated from the measured densities of the pure components at different temperatures) and  $C_{p,i}$  is the molar heat capacity of  $i^{th}$  component.  $C_{p,i}$  values at different temperatures are taken from the literature.

The excess molar volume was calculated from the relation

$$V^{E} = [(x_{1}M_{1} + x_{2}M_{2})/\rho - x_{1}M_{1}/\rho_{1} - x_{2}M_{2}/\rho_{2}] ---(5)$$

where  $x_1$ ,  $x_2$ ,  $M_1$ ,  $M_2$ ,  $\rho_1$  and  $\rho_2$  represent the mole fraction, molar masses and densities of pure components respectively and  $\rho$  is the density of liquid mixture.

The refractive index deviations,  $\Delta n_D$ , were obtained from the relation

$$\Delta n_{\rm D} = n_{\rm D} - x_1 n_{\rm D1} - x_2 n_{\rm D2} \qquad ---(6)$$

The calculated  $k_s^E$  values and  $\Delta n_D$  values were correlated by the Redlich-Kister polynomial [12] by using the relation

$$\Delta Y = x_1 x_2 \sum_{i=0}^{n} a_i (x_1 - x_2)^i \qquad ---(7)$$

The coefficients,  $a_i$ , in eq 7 were estimated by the least-squares fitting method, and the standard deviation,  $\sigma$ , was calculated by using the relation

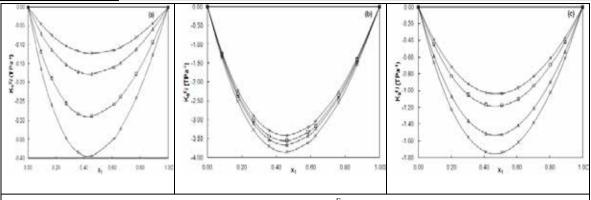
$$\sigma = \left[ \sum_{i=0}^{D} \frac{(\Delta Y_{\text{exp}t} - \Delta Y_{cal})^{2}}{(D-N)} \right]^{1/2} ---(8)$$

where D and N are the number of data points and parameters respectively.

Regression results for  $k_s^E$ ,  $V_m^E$  and  $\Delta n_D$  of three binary mixtures at different temperatures are reported in table 3.

Table 1 Comparison of Experimental densities,  $\rho$ , speeds of sound, u, and refractive indices,  $n_D$ , of pure liquids with literature values

| Liquid            | T/K    | ρ/(kgm <sup>-3</sup> ) |                        | u/(ms <sup>-1</sup> ) |                       | $n_{\mathrm{D}}$ |                        | α/(10 <sup>-</sup> | C <sub>p</sub> /(J.mol |
|-------------------|--------|------------------------|------------------------|-----------------------|-----------------------|------------------|------------------------|--------------------|------------------------|
| _                 |        | Expt.                  | Lit.                   | Expt.                 | Lit.                  | Expt.            | Lit.                   | Expt.              | Lit.                   |
| Diethyl carbonate | 303.15 | 963.47                 | 963.00 <sup>[6]</sup>  | 1156.9                |                       | 1.3802           | 1.3801 <sup>[6]</sup>  | 1.17653            | 221.6 <sup>[11]</sup>  |
| Nitrobenzene      | 303.15 | 1192.3                 | 1193.4 <sup>[7]</sup>  | 1438.3                | 1444.3 <sup>[8]</sup> | 1.5418           | 1.5420 <sup>[9]</sup>  | 0.83386            | 142 <sup>[11]</sup>    |
| Chlorobenzene     | 303.15 | 1095.5                 | $1095.0^{[7]}$         | 1248.9                | 1252.0 <sup>[9]</sup> | 1.5187           | 1.5191 <sup>[9]</sup>  | 0.79213            | 129.4 <sup>[11]</sup>  |
| Ethylbenzene      | 303.15 | 859.29                 | 858.10 <sup>[10]</sup> | 1297.7                | -                     | 1.4898           | 1.4906 <sup>[10]</sup> | 1.03971            | 171.1 <sup>[11]</sup>  |


Table 2 Densities,  $\rho$ , speeds of sound, u, and refractive indices,  $n_D$ , for binary mixtures at T=(293.15, 303.15, 313.15 and 323.15) K

| $\mathbf{x}_1$                      | $\rho/(kgm^{-3})$ | u/(ms <sup>-1</sup> ) | $n_D$    | $\rho/(kgm^{-3})$ | u/(ms <sup>-1</sup> ) | $n_D$    |  |
|-------------------------------------|-------------------|-----------------------|----------|-------------------|-----------------------|----------|--|
| {Diethyl carbonate + Nitrobenzene}  |                   |                       |          |                   |                       |          |  |
|                                     | T = 293.15  K     |                       |          | T = 303.15  K     |                       |          |  |
| 0.000000                            | 1202.238          | 1474.07               | 1.552334 | 1192.297          | 1438.30               | 1.541859 |  |
| 0.093671                            | 1179.555          | 1447.27               | 1.529004 | 1169.588          | 1410.67               | 1.521554 |  |
| 0.167813                            | 1161.679          | 1426.18               | 1.514038 | 1151.720          | 1389.12               | 1.506858 |  |
| 0.271534                            | 1137.613          | 1396.76               | 1.494745 | 1127.312          | 1359.07               | 1.487897 |  |
| 0.357663                            | 1117.218          | 1372.21               | 1.479554 | 1106.804          | 1334.20               | 1.473076 |  |
| 0.454745                            | 1094.887          | 1345.12               | 1.463265 | 1084.371          | 1306.65               | 1.457079 |  |
| 0.614931                            | 1059.198          | 1300.95               | 1.438064 | 1048.576          | 1261.57               | 1.433029 |  |
| 0.660560                            | 1049.223          | 1288.49               | 1.431038 | 1038.529          | 1248.79               | 1.426519 |  |
| 0.772188                            | 1024.734          | 1258.34               | 1.414238 | 1013.802          | 1217.90               | 1.410186 |  |
| 0.890681                            | 998.715           | 1227.05               | 1.397277 | 987.638           | 1186.02               | 1.393785 |  |
| 1.000000                            | 974.699           | 1198.01               | 1.384701 | 963.468           | 1156.96               | 1.380107 |  |
|                                     |                   | T = 313.15  K         |          | T = 323.15 K      |                       |          |  |
| 0.000000                            | 1182.355          | 1402.70               | 1.541592 | 1172.408          | 1367.68               | 1.536476 |  |
| 0.093671                            | 1159.516          | 1374.35               | 1.522334 | 1149.425          | 1338.01               | 1.518865 |  |
| 0.167813                            | 1141.539          | 1352.09               | 1.507705 | 1131.336          | 1315.56               | 1.504782 |  |
| 0.271534                            | 1116.988          | 1321.57               | 1.489083 | 1106.631          | 1284.56               | 1.485873 |  |
| 0.357663                            | 1096.362          | 1296.42               | 1.474016 | 1085.885          | 1259.01               | 1.470715 |  |
| 0.454745                            | 1073.821          | 1268.35               | 1.457526 | 1063.228          | 1230.48               | 1.454296 |  |
| 0.614931                            | 1037.908          | 1222.43               | 1.432184 | 1027.192          | 1183.83               | 1.429345 |  |
| 0.660560                            | 1027.777          | 1209.39               | 1.425164 | 1016.861          | 1170.60               | 1.422388 |  |
| 0.772188                            | 1002.798          | 1177.88               | 1.408514 | 991.710           | 1138.44               | 1.405523 |  |
| 0.890681                            | 976.470           | 1145.16               | 1.391256 | 965.209           | 1105.09               | 1.387562 |  |
| 1.000000                            | 952.134           | 1116.45               | 1.375586 | 940.691           | 1076.66               | 1.370953 |  |
| {Diethyl Carbonate + Chlorobenzene} |                   |                       |          |                   |                       |          |  |
|                                     | T = 293.15  K     |                       |          | T = 303.15  K     |                       |          |  |
| 0.000000                            | 1106.296          | 1285.71               | 1.525885 | 1095.506          | 1248.92               | 1.518758 |  |
| 0.083980                            | 1093.410          | 1278.03               | 1.510295 | 1083.340          | 1240.65               | 1.504221 |  |
| 0.177393                            | 1079.990          | 1269.70               | 1.495487 | 1069.756          | 1231.85               | 1.489550 |  |
| 0.268224                            | 1067.467          | 1261.68               | 1.481793 | 1057.263          | 1223.40               | 1.476075 |  |
| 0.359118                            | 1055.470          | 1253.71               | 1.468440 | 1044.924          | 1215.05               | 1.462824 |  |

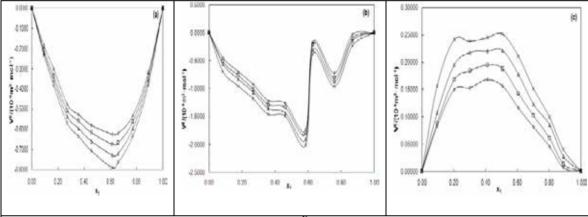
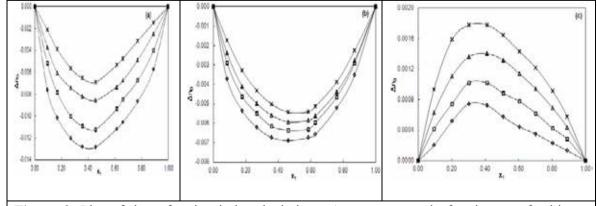

| RESEARCH PAPER Volume : 4   Issue : 8   August 2014   ISSN - 2249-555X |          |               |                 |               |               |          |  |  |
|------------------------------------------------------------------------|----------|---------------|-----------------|---------------|---------------|----------|--|--|
| 0.461705                                                               | 1042.065 | 1244.74       | 1.453798        | 1031.473      | 1205.63       | 1.448401 |  |  |
| 0.584550                                                               | 1026.122 | 1233.99       | 1.436603        | 1015.282      | 1194.41       | 1.431435 |  |  |
| 0.629016                                                               | 1020.399 | 1230.10       | 1.430510        | 1009.559      | 1190.34       | 1.425625 |  |  |
| 0.760177                                                               | 1003.870 | 1218.65       | 1.413358        | 993.289       | 1178.36       | 1.408761 |  |  |
| 0.869399                                                               | 990.570  | 1209.19       | 1.399621        | 979.863       | 1168.49       | 1.395352 |  |  |
| 1.000000                                                               | 974.699  | 1198.01       | 1.384712        | 963.468       | 1156.96       | 1.380170 |  |  |
|                                                                        |          | T = 313.15  K |                 |               | T = 323.15  K |          |  |  |
| 0.000000                                                               | 1084.665 | 1212.19       | 1.513081        | 1073.772      | 1175.99       | 1.507462 |  |  |
| 0.083980                                                               | 1072.811 | 1203.40       | 1.499142        | 1063.319      | 1166.60       | 1.494266 |  |  |
| 0.177393                                                               | 1059.358 | 1194.10       | 1.484589        | 1049.487      | 1156.89       | 1.479959 |  |  |
| 0.268224                                                               | 1046.598 | 1185.27       | 1.471204        | 1036.561      | 1147.68       | 1.466516 |  |  |
| 0.359118                                                               | 1034.307 | 1176.51       | 1.458110        | 1023.897      | 1138.56       | 1.453416 |  |  |
| 0.461705                                                               | 1021.001 | 1166.71       | 1.443659        | 1010.039      | 1128.40       | 1.438994 |  |  |
| 0.584550                                                               | 1004.858 | 1155.04       | 1.426854        | 994.139       | 1116.30       | 1.422246 |  |  |
| 0.629016                                                               | 999.120  | 1150.82       | 1.420970        | 988.282       | 1111.95       | 1.416463 |  |  |
| 0.760177                                                               | 982.408  | 1138.42       | 1.404182        | 971.629       | 1099.17       | 1.399815 |  |  |
| 0.869399                                                               | 968.857  | 1128.29       | 1.390757        | 958.042       | 1088.75       | 1.386509 |  |  |
| 1.000000                                                               | 952.134  | 1116.45       | 1.375586        | 940.691       | 1076.66       | 1.370953 |  |  |
|                                                                        |          | {Diethyl c    | arbonate + Ethy | ylbenzene}    |               |          |  |  |
|                                                                        |          | T = 293.15  K |                 | T = 303.15  K |               |          |  |  |
| 0.000000                                                               | 867.108  | 1339.57       | 1.495667        | 859.298       | 1297.66       | 1.489875 |  |  |
| 0.093846                                                               | 876.520  | 1325.27       | 1.485453        | 868.379       | 1283.22       | 1.479993 |  |  |
| 0.201961                                                               | 887.574  | 1308.78       | 1.473774        | 879.016       | 1266.82       | 1.468464 |  |  |
| 0.302935                                                               | 898.346  | 1293.32       | 1.462796        | 889.357       | 1251.48       | 1.457663 |  |  |
| 0.410995                                                               | 909.808  | 1277.50       | 1.450783        | 900.494       | 1235.75       | 1.445804 |  |  |
| 0.507910                                                               | 920.304  | 1263.68       | 1.439877        | 910.617       | 1222.02       | 1.435038 |  |  |
| 0.606418                                                               | 931.199  | 1249.71       | 1.428816        | 921.207       | 1208.17       | 1.424122 |  |  |
| 0.703041                                                               | 941.886  | 1236.40       | 1.418001        | 931.594       | 1194.91       | 1.413366 |  |  |
| 0.803457                                                               | 953.022  | 1223.08       | 1.406738        | 942.403       | 1181.65       | 1.402156 |  |  |
| 0.891381                                                               | 962.851  | 1211.55       | 1.396883        | 951.975       | 1170.12       | 1.392367 |  |  |
| 1.000000                                                               | 974.699  | 1198.01       | 1.384700        | 963.468       | 1156.96       | 1.380170 |  |  |
|                                                                        |          | T = 313.15  K |                 | T = 323.15  K |               |          |  |  |
| 0.000000                                                               | 849.437  | 1256.38       | 1.484108        | 840.519       | 1215.77       | 1.478449 |  |  |
| 0.093846                                                               | 858.279  | 1241.91       | 1.474546        | 848.819       | 1201.17       | 1.469293 |  |  |
| 0.201961                                                               | 868.702  | 1225.50       | 1.463294        | 859.017       | 1184.76       | 1.458323 |  |  |
| 0.302935                                                               | 878.853  | 1210.22       | 1.452594        | 869.101       | 1169.61       | 1.447660 |  |  |
| 0.410995                                                               | 889.890  | 1194.58       | 1.440907        | 879.840       | 1154.04       | 1.436046 |  |  |
| 0.507910                                                               | 899.807  | 1180.92       | 1.430305        | 889.474       | 1140.52       | 1.425491 |  |  |
| 0.606418                                                               | 910.234  | 1167.19       | 1.419435        | 899.616       | 1126.88       | 1.414689 |  |  |
| 0.703041                                                               | 920.571  | 1154.02       | 1.408751        | 909.725       | 1113.82       | 1.404090 |  |  |
| 0.803457                                                               | 931.192  | 1140.88       | 1.397603        | 920.187       | 1100.60       | 1.392993 |  |  |
| 0.891381                                                               | 940.696  | 1129.49       | 1.387807        | 929.462       | 1089.37       | 1.383201 |  |  |
| 1.000000                                                               | 952.134  | 1116.45       | 1.375586        | 940.691       | 1076.66       | 1.370953 |  |  |

Table 3 Value of Coefficients,  $a_i$ , of the Redlich-Kister Polynomial and standard deviations,  $\sigma$ , for binary mixtures at T = (293.15, 303.15, 313.15 and 323.15) K


| -                                  | FD /T.T. | 1              |                |          |          |         |  |
|------------------------------------|----------|----------------|----------------|----------|----------|---------|--|
| Parameter                          | T/K      | $a_0$          | a <sub>1</sub> | $a_2$    | $a_3$    | σ       |  |
| {Diethyl carbonate + Nitrobenzene} |          |                |                |          |          |         |  |
| $k_a^E/(TPa^{-1})$                 | 293.15   | -1.55263       | -0.39039       | -0.10425 | -0.01583 | 0.00008 |  |
|                                    | 303.15   | -1.14283       | -0.27257       | -0.07682 | -0.01707 | 0.00010 |  |
|                                    | 313.15   | -0.70130       | -0.13187       | -0.03617 | -0.02115 | 0.00009 |  |
|                                    | 323.15   | -0.49290       | -0.05267       | -0.00625 | -0.02392 | 0.00021 |  |
| $V^{E}/(10^{-6}.m^{3}.mol^{-1})$   | 293.15   | -2.45970       | 0.65333        | -0.54837 | 0.06764  | 0.01491 |  |
|                                    | 303.15   | -2.62486       | 0.78122        | -0.63388 | -0.26308 | 0.01347 |  |
|                                    | 313.15   | -2.81853       | 0.90696        | -0.59587 | -0.44027 | 0.01498 |  |
|                                    | 323.15   | -3.02331       | 1.00000        | -0.56049 | -0.54204 | 0.01611 |  |
| $\Delta n_{\mathrm{D}}$            | 293.15   | -0.04878       | -0.01416       | -0.03383 | -0.00411 | 0.00029 |  |
|                                    | 303.15   | -0.04253       | -0.01634       | -0.01152 | 0.00777  | 0.00016 |  |
|                                    | 313.15   | -0.03312       | -0.00920       | -0.00237 | -0.00495 | 0.00012 |  |
|                                    | 323.15   | -0.02615       | -0.01301       | 0.00963  | 0.01028  | 0.00008 |  |
|                                    | {]       | Diethyl carbor | nate + Chloro  | benzene} | 1        |         |  |
| $k_a^E/(TPa^{-1})$                 | 293.15   | -0.13552       | -2.37623       | -0.31480 | -0.03602 | 0.00006 |  |
| n <sub>c</sub> /(11 w )            | 303.15   | -14.15086      | -2.49983       | -0.33635 | -0.03786 | 0.00010 |  |
|                                    | 313.15   | -14.54438      | -2.58469       | -0.34888 | -0.04312 | 0.00011 |  |
|                                    | 323.15   | -15.30378      | -2.74523       | -0.38185 | -0.05062 | 0.00016 |  |
| $V^{E}/(10^{-6}.m^{3}.mol^{-1})$   | 293.15   | -4.92800       | -1.99433       | 3.89032  | -1.32081 | 0.40554 |  |
| (                                  | 303.15   | -5.15663       | -2.07659       | 3.13780  | -1.24603 | 0.41205 |  |
|                                    | 313.15   | -5.54323       | -1.80320       | 3.15773  | -1.93574 | 0.41430 |  |
|                                    | 323.15   | -5.82514       | -1.77380       | 1.92533  | -2.65455 | 0.42310 |  |
| $\Delta n_{\mathrm{D}}$            | 293.15   | -0.02744       | -0.00034       | -0.01509 | -0.01356 | 0.00013 |  |
| <sub>D</sub>                       | 303.15   | -0.02557       | -0.00058       | -0.00748 | -0.00998 | 0.00006 |  |
|                                    | 313.15   | -0.02382       | -0.00001       | -0.00543 | -0.00639 | 0.00004 |  |
|                                    | 323.15   | -0.02208       | 0.00049        | 0.00144  | -0.00418 | 0.00004 |  |
|                                    |          | Diethyl carbo  |                |          | 0.00110  | 0.00001 |  |
| $k_a^E/(TPa^{-1})$                 | 293.15   | -4.14002       | -0.49174       | -0.06361 | -0.01022 | 0.00006 |  |
| K <sub>c</sub> /(II a )            | 303.15   | -4.73298       | -0.59130       | -0.07623 | -0.01570 | 0.00007 |  |
|                                    | 313.15   | -6.10609       | -0.80877       | -0.12874 | -0.00175 | 0.00221 |  |
|                                    | 323.15   | -6.98011       | -0.96152       | -0.12839 | -0.02460 | 0.00004 |  |
| $V^{E}/(10^{-6}.m^{3}.mol^{-1})$   | 293.15   | 0.60660        | 0.42610        | -0.10318 | 0.23531  | 0.00655 |  |
| v /(10 .111 .11101                 | 303.15   | 0.73017        | 0.47402        | -0.16643 | 0.17065  | 0.00605 |  |
|                                    | 313.15   | 0.75017        | 0.47402        | -0.10043 | 0.17003  | 0.00769 |  |
|                                    | 323.15   | 0.95445        | 0.35915        | 0.20493  | 0.89645  | 0.00703 |  |
| $\Delta n_{\mathrm{D}}$            | 293.15   | 0.00249        | 0.00288        | -0.00049 | -0.00362 | 0.00003 |  |
| பாற                                | 303.15   | 0.00247        | 0.00263        | 0.00020  | -0.00302 | 0.00003 |  |
|                                    | 313.15   | 0.00572        | 0.00263        | 0.00020  | -0.00238 | 0.00003 |  |
|                                    | 323.15   | 0.00551        | 0.00203        | 0.00300  | -0.00144 | 0.00001 |  |
|                                    | 343.13   | 0.00004        | 0.00343        | 0.00300  | -0.00034 | 0.00001 |  |



**Figure 1.** Plot of the excess isentropic compressibility,  $K_s^E$ , versus mole fraction,  $x_1$ , for binary liquid mixtures of diethyl carbonate with (a) nitrobenzene (b) chlorobenzene and (c) ethylbenzene at temperatures:  $\Diamond$ , 293.15 K;  $\Box$ , 303.15 K;  $\Delta$ , 313.15 K; and  $\times$ , 323.15 K.



**Figure 2.** Plot of the excess molar volume,  $V^E$ , versus mole fraction,  $x_1$ , for binary liquid mixtures of diethyl carbonate with (a) nitrobenzene (b) chlorobenzene and (c) ethylbenzene at temperatures:  $\Diamond$ , 293.15 K;  $\Box$ , 303.15 K;  $\Delta$ , 313.15 K; and  $\times$ , 323.15 K.



**Figure 3.** Plot of the refractive index deviations,  $\Delta n_D$ , versus mole fraction,  $x_1$ , for binary liquid mixtures of diethyl carbonate with (a) nitrobenzene (b) chlorobenzene and (c) ethylbenzene at temperatures:  $\Diamond$ , 293.15 K;  $\Box$ , 303.15 K;  $\Delta$ , 313.15 K; and  $\times$ , 323.15 K.

The graphical variations of  $k_s^E$ ,  $V_m^E$  and  $\Delta n_D$  with the mole fraction of diethyl carbonate for the three binary mixtures at T = (293.15, 303.15, 313.15 and 323.15) Kare shown in figures 1(a) to 1(c), 2 (a) to 2(c) and 3 (a) to 3(c) respectively. The  $k_s^E$ values depend upon the relative strengths of several opposing effects that include (a) structural, (b) chemical and (c) physical contributions [13]. (a) The structural contribution involves the geometric effect allowing the fitting of molecules of two different sizes into each others' structure resulting in negative contribution to  $k_s^E$ , (b) The physical contribution consists of dispersion forces or weak dipole-dipole interactions that lead positive to contribution towards  $\mathbf{k}_s^E$  and (c) Chemical contribution includes specific interactions such as formation of hydrogen bonds, formation of charge transfer complexes and other complex forming interactions including strong dipole-dipole interactions between component molecules result in

negative  $k_s^E$  values. From figures 1(a to c), the  $k_s^E$  values are observed to be negative. In DEC + CB and DEC + EB mixtures as the temperature increases the  $k_s^E$  values are observed to be more negative. The more  $k_s^E$  values in the profiles, negative followed the trend, DEC + CB > DEC + EB > DEC+ NB. The observed negative  $\mathbf{k}_{s}^{E}$  values for all the three systems under study, indicate that the mixture is less compressible than the corresponding ideal suggesting mixture, that significant interactions occurred between the unlike molecules of the mixture.

The variations of  $V^E$  for all of the systems, at different temperatures, are shown in figures 2(a to c). From figure 2(a), the values of  $V^E$  are found to be negative over the entire mole fraction range for the system DEC + NB, for DEC + EB (Figure 2(c)) these values are found to be positive whereas these values are found to be negative for the system DEC + CB except at higher mole fraction and at higher

temperature. From figures 2(a and b) it is observed that as the temperature of the system increases excess molar volumes become less. negative, indicating decrease in interactions between the unlike molecules. The  $V^{\text{E}}$  values are observed to be less negative in case of DEC + NB when compared to DEC + CB. It suggests that the interactions are strong in DEC + CB when compared to DEC + NB. This is due to the predominance of physical interactions over chemical interactions between the unlike molecules. In other words, smaller molecules are geometrically fitting into the voids created the larger molecules among the molecular components of liquid mixtures. Similar interpretation was reported by the researchers in the field [14,15].

The values of  $\Delta n_D$  are found to be negative (figure 3 (a to c)) over the entire mole fraction range for the systems DEC + NB, + CB whereas for DEC+ EB these values are positive. The values are found to be

more negative in case of DEC+NB when compared to DEC+CB. The maxima of  $\Delta n_D$  values for the DEC+EB system occurs at 0.3 mole fraction, whereas that for the DEC+NB and DEC+CB systems the minima of  $\Delta n_D$  occurs at 0.4 mole fraction. The strength of interactions in the mixtures follows the order DEC + EB >DEC + CB > DEC + NB.

## **Conclusion:**

Density, speed of sound and refractive index data are reported for the binary mixtures of DEC + NB, or + CB, or + EB at T = (293.15, 303.15, 313.15 and 323.15) K and at atmospheric pressure. Excess isentropic compressibility, excess molar volume and deviation in refractive index were also studied in all mole fraction and temperature ranges. To obtain an adequate description of thermophysical behaviour of mixtures containing DEC + benzene derivatives these data are useful in fuel industry.

REFERENCE

1. D.V. Jahagirdar, B.R. Arbad, A.A. Walvekar, A.G. Shankarwar and M.K. Lande, J. mol. liq., 2000,85;361-373. | 2. O. Stefano, V. Daniele, C. Fabio and C. Carlo, J. Chem. Eng. Data, 2004,49;148-154. | 3. R.A. Balasaheb, K.L. Machhindra, N.W. Nilesh and S.W. Dnyaneshwar, J. Chem. Eng. Data, 2006,51;68-72. | 4. G. Ana, M.C. Lidia, E.M. Raquel, E.A. Alfonsina and L.L. Jose, J. Chem. Thermodyn., 2013,58;245-253. | 5. Z. Jun, C. Yao, Z. Xiaoming and W. Caiyu, J. Chem. Thermodyn., 2013,63;116-122. | 6. M.V. Ratnam, Sudhir Mohite and M. Nandini, J. mol. liq., 2013,177;229-236. | 7. S.S. Joshi, T.M. Aminabhavi, Ramachandran, H. Balundgi, J. Chem. Eng. Data, 1990,35;185. | 8. K.S. Reddy, R. Venkateswarlu and G.K. Rana, Indian J. Chem. Technol., 1995,27;221. | 9. A. Ali and M. Tariq, J. mol. liq., 2004,128;50-55. | 10. A. Rodriguez, J. Canosa and J. Tojo, J. Chem. Eng. Data, 2001,46;1506-1515. | 11. C.L. Yaws, hand book of Thermodynamic & Physical properties of chemical compounds, Gulf Publications, Houstan, Tx, 2007. | 12. O. Redlich and A.T. Kister, Ind. Eng. Chem., 1948,40;345-348. | 13. G.S. Reddy, A.S. Reddy, M.V. Subbaiah and A. Krishnaiah, J. Sol. Chem., 2010,39;399-408. | 14. E. Calvo-Iglesias, R. Bravo, M. Pintos, A. Amigo, A.H. Roux and G. Roux-Desgranges, J. Chem. Thermodyn., 2007,39;561-567. | 15. K. Narendra, Ch. Srinivasu, Sk. Fakruddin and P. Narayanamurthy, J. Chem. Thermodyn., 2011,43;1604-1611. |