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ABSTRACT In the present study, we divided the data into two parts, for each set of data we have fitted suitable 
ARMA model. By using these ARMA models we fitted Weighted Average ARMA (WARMA) model for part 

I & part II separately. WARMA model is compared with ARMA (3, 2) model by using Mean Square Error (MSE) criteria. 
MSE criteria is used for choosing best model between the two models, Theil’s U-Statistic is used for testing accuracy of 
models and Kolmogrov-Smirnov (K-S) test is used for goodness of fit.

1.	 Introduction 
Autoregressive moving average plays an important role in 
forecasting. As compared with Auto regression (AR) mod-
els and moving average (MA) models, Autoregressive mov-
ing average model is the best. Upon changing orders of 
Auto regression (p) and moving average (q), we get sev-
eral ARMA models. The development of forecasting ARMA 
model requires a suitable data so that correct relationships 
can be established. Forecasting methodology is based 
mainly upon model building.

ARMA model:
ARMA model is the best model compared with MA and 
AR models. The basic elements of autoregressive and 
moving average models can be combined to produce a 
great variety of models. Combination of pth order autore-
gressive model and qth order moving average model called 
an ARMA (p, q) model and is expressed as

1 1 2 2 1 1 2 2t t t p t p t t t q t qY c Y Y Y e e e eφ φ φ θ θ θ− − − − − −= + + + + + − − − − 

2.	 Methodology
Forecast models are fitted for data to estimate future val-
ues. For estimation of future values, we have to fit appro-
priate models, some of them are moving average, auto 
regression, exponential smoothing, autoregressive mov-
ing average (ARMA), autoregressive integrated moving 
average (ARIMA) with various orders and also improved 
models like autoregressive conditional heteroscedastisity 
(ARCH), Generalized autoregressive conditional heterosce-
dastisity (GARCH), Exponentially generalized autoregres-
sive conditional heteroscedastisity (EGARCH), Integrated 
generalized autoregressive conditional heteroscedastisity 
(IGARCH), etc. All these models are improved models of 
one after another by modifying basic models. Modification 
of model is because of fitting the best model for data than 
the previous one.

Now we improving ARMA model, and if data is large, split 
data into two parts, perform autoregressive moving aver-
age to both parts. If the first part of data possesses auto 
regression of order ‘p’ with moving average of order ‘q’ 
and second part of data possess ARMA (r, s) equations are 
as follows

Part I: ARMA (p, q)
 

1 1 2 2 1, 1 1, 1 2 1, 2 1,t t t p t p t t t q t qY c Y Y Y e e e eφ φ φ θ θ θ− − − − − −= + + + + + − − − − 

Part II: ARMA (r, s)

1 1 2 2 2, 1 2, 1 2 2, 2 2,t t t r t r t t t s t sy c y y y e e e eδ δ δ ϕ ϕ ϕ− − − − − −= + + + + + − − − − 

Root Mean Square Error (RMSE) is used for ARMA (p, q) 
and ARMA (r, s) of models for selecting the best model for 
part I and part II. A minimum RMSE value of various ARMA 
(p, q) is the best model for part I and similarly we estimate 
a suitable ARMA (r, s) model for part II by using RMSE

Root Mean Square Error (RMSE):
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 By choosing the best ARMA models for part I and part II 
of data are ARMA (pi, qi) and ARMA (ri, si) respectively. We 
now estimating weighted ARMA model.
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where α + β = 1

Weighted autoregressive moving average is calculated for 
ARMA (pi, qi), ARMA (ri, si) and are consider as variables, 
and their weights are α, β. For part I data, we taking high 
weight ‘α’ for ARMA (pi, qi), and ARMA (ri, si) possessing 
low weight ‘β’. For part II data, ARMA (ri, si) take high 
weight ‘α’ and ARMA (pi, qi) takes low weight ‘β’.

where α + β = 1, and α takes highest values like 0.9, 0.8, 
0.7 etc. and β takes 0.1, 0.2, 0.3, etc. respectively. By giv-
ing more weight to part I best ARMA model and least 
weight to best ARMA of part II with weights α and β, we 
get the weighted ARMA model for part I. By giving least 
weight to best ARMA model of part I and more weight to 
best ARMA model of part II, we get weighted ARMA mod-
el for part II.

Theil’s U-Statistics is used for accuracy, mean square error 
(MSE) is used for selection of best model among ARMA (3, 
2) and WARMA.

Theils U- Statistic
Theil’s U Statistic is used for measuring forecasting ac-
curacy. It is a relative comparison of formal forecasting 
methods with naive approaches and also squares errors 
involved so that large errors are given much more weight 
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than small errors.

Theil’s U-Statistic U =    
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3.	 Empirical investigation
Empirical investigations are carrieed out by taking time 
points from 1976 to 2012 and time series values are an-
nual average temperatures. We know that ARMA (3, 2) is 
a better model for the data among ARMA (1, 1), ARMA (1, 
2), ARMA (1, 3), ARMA (2, 1), ARMA (2, 2), ARMA (2, 3), 
ARMA (3, 1), ARMA (3, 2) and ARMA (3, 3) models. Data 
contains 37 years of data. Data splitted into two parts, first 
part contains from 1976 to 1994 and another part contains 
from 1995 to 2012. We perform all 9 models of ARMA 
for part I data from 1976 to 1994 and also for part II data 
from 1995 to 2012 by using RMSE, we select the best 
model among 9 models.

We chose ARMA (1, 1) model with lowest RMSE 0.774 
and is the best model compared with all other models of 
ARMA. 

Best model for part I: ARMA (1, 1)

Yt = - 0.999 Yt-1  – 0.997 et-1 + et – 217.557

An ARMA model possesses lowest RMSE is the best mod-
el. 

Best model for part II: ARMA (2, 1)

Yt = 0.141 Yt-1 – 0.219 Yt-2 – 0.998 et-1 + et – 53.839 

ARMA

models
(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

RMSE

of

Part I

0.774 0.804 0.817 0.784 0.827 0.805 0.795 0.814 0.835

RMSE       
of

Part II
1.364 1.184 1.191 1.071 1.098 1.132 1.099 1.147 1.222

We now fitting weighted ARMA model with weights α = 
0.9 and β = 0.1 for ARMA (1, 1), and ARMA (2, 1) for part 
I. For part II data, weight is switching that is weighted 
ARMA (2. 1) takes 0.9 and weighted of ARMA (1, 1) takes 
0.1. 

Weighted ARMA = 0.9 ARMA (1, 1) + 0.1 ARMA (2, 1) 	
			   for part I 

                       = 0.1 ARMA (1, 1) + 0.9 ARMA (2, 1) 	
			   for part II

Theil’s U-Statistics: The calculated values of Theil’s U-Sta-
tistic for ARMA (3, 2) and WARMA models are as follows
Theil’s U-Statistics of ARMA (3, 2) is 0.0070

Theil’s U-Statistics of WARMA is 0.0054

The weighted ARMA model is the best model for forecast-
ing.

4.	 Comparison of ARMA with WARMA: 
By using mean square error criteria, we compare ARMA 
and WARMA models for the entire data (without splitting).

MSE of WARMA: 0.6504

MSE of ARMA (3, 2): 0.8203

MSE of WARMA < MSE of ARMA (3, 2), therefore we con-
clude that weighted autoregressive moving average model 
is better when compared with autoregressive moving aver-
age (3, 2). 

5.	 Graphical representation of ARMA and WARMA 
models
By taking time ‘t’ on x-axis and time series values (annual 
production), the estimated values of autoregressive mov-
ing average (ARMA (3, 2)) model and estimated values of 
weighted autoregressive moving average (WARMA) are on 
Y-axis gives the following graph. 

6.	 Summary and conclusions

We estimated weighted ARMA model. If data is large 
then divide the data into two parts and estimate the best 
ARMA models for two parts of data. By taking the best 
ARMA models of part as variables and their weights are 
α and β. We computing weighted ARMA model. For two 
parts of data, we estimated ARMA equations which suit for 
each part using RMSE. 

Weighted autoregressive moving average is calculated as 
ARMA (pi, qi), ARMA (ri, si) and these are variables and 
their weights are α, β. For part I data, we take high weight 
‘α’ for ARMA (pi, qi), ARMA (ri, si) possessing low weight 
‘β’. For part II data, ARMA (ri, si) take high weight ‘α’ and 
for ARMA (pi, qi) takes low weight ‘β’.
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WARMA ARMA p q ARMA r s for part I
ARMA p q ARMA r s for part II

α β
β α

= +
= +

Data is divided into two parts, first part contains 1976 to 
1994 and second part contains 1995 to 2012. We per-
formed 9 ARMA models for two parts and by using RMSE, 
we choose the best models of two parts.

We choose ATRMA (1, 1) as the best model for Part I, 
ARMA (2, 1) is the best for Part II. 

For the given data the best estimated model for two parts 
are 

ARMA (1, 1)   for Part I:  	 Yt = - 0.999 Yt-1  – 0.997 et-1 
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+ et – 217.557

ARMA (2, 1)   for Part II:  	 Yt = 0.141 Yt-1 – 0.219 Yt-2 – 
0.998 et-1 + et – 53.839

We have fitted other models for two parts and they are

ARMA (2, 1) for Part I:	 Yt = 0.904 Yt-1 – 0.576 Yt-2 – 
et-1 + et – 217.568 

ARMA (1, 1) for Part II:	  Yt = 0.145 Yt-1  – 0.984 et-1 + 
et – 53.840 

By using the above 4 ARMA equations, we fitting weight-
ed autoregressive moving average (WARMA) model. 

Weighted ARMA = 0.9 ARMA (1, 1) + 0.1 ARMA (2, 1) 	
			   for part I 

                        = 0.1 ARMA (1, 1) + 0.9 ARMA (2, 1) 	
			   for part II

We checked the best model among fitted models and old 
ARMA by using MSE.

In WARMA model, we computed MSE of WARMA and 
ARMA models.

MSE of WARMA: 0.6504

MSE of ARMA:  0.8203

MSE of WARMA < MSE of ARMA (3, 2)

Therefore, we conclude that WARMA model is better mod-
el compared with ARMA (3, 2) model.

We tested accuracy of fitted models by using Theil’s U test 
statistic. We showed empirically that new fitted WARMA 
models are accurate models.

Finally we used Kolmogrov-Smirnov test for testing good-
ness of fit for new fitted ARMA models.
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