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ABSTRACT This work investigates the elastic properties of NiMgCuZn ferrites. Ferrite samples were fabricated by 
means of the conventional double sintering technique. Magenesium nickel  zinc and iron oxides were 

used as raw materials. The samples were sintered at 12500C, The samples were then characterized by the X-ray dif-
fraction (XRD), scanning electron microscopy (SEM) techniques. All these samples showed the formation of single-
phase cubic spinel structure. The studies were carried out on the effect of temperature on the longitudinal modulus 
NiMgCuZnFe2O4 ¬within temperature range 30oC to 360oC. A brief review of the important investigations carried out 
on the elastic behavior of different materials is listed out along a brief review of the different experimental techniques, 
employed to study the elastic behavior of solid materials is presented in this section with necessary theory. In the pre-
sent investigation, the two composite piezoelectric resonator methods have been used. Results and discussions on the 
measurement of thermo elastic behavior of the present NiMgCuZnFe2O4 samples are discussed in all the series stud-
ied. Studies on these NiMgCuZn ferrites are under examination were developed for their possible application as core 
materials for microinductor applications.

1. Introduction:
The high potential applications of ferrites occupy an im-
portant place in the field of electronics; microwave and 
computer technologies have attracted the attention of 
many research workers in the field of materials science. 
They have advanced to a position of technological promi-
nence in the last two decades.  They are being extensively 
studied from the point of view of understanding their be-
haviour and applications.  Recently there have been con-
siderable advances in the understanding of the relationship 
between the microstructural characteristics and physical 
behaviour of ferrites. The increased knowledge has led to 
the development of desired microstructure in ferrites and 
also to the refinement of their manufacturing processes. 
The field of ceramic science and technology is therefore 
continuously growing in the light of these developments.

Measurements of elastic properties and acoustic losses are 
highly useful in the study of the phenomena such as phase 
transitions and relaxation processes in ferrites. This type of 
study leads to a knowledge of mechanical, magnetic and 
electrical losses in the ferrite materials and therefore, is of 
prime importance in their understanding from the point of 
view of their technological applications. These studies are 
also useful in the development of new compositions. In 
spite of the importance of such measurements not much 
work has been done on the experimental side excepting a 
few cases.

2. Brief Review of the work carried out on the Elastic 
behavior of ferrites: 
Weil [1] was the first person to study the elastic behav-
iour of nickel and zinc ferrites. Using resonance method 
of magnetostriction, he studied the variation of Young’s 
modulus in these ferrites having different densities and 
reported that the modulus increases with increasing den-
sity.  By exciting extensional and torsional vibrations, van 
der Burgt [2] studied the elastic behaviour of Ni-Cu-Co fer-
rites.   Fine and Kenney [3] using piezo-magnetic and pie-
zo-electric methods, observed for the first time a low tem-

perature ordering transformation (95 K) in magnetite which 
was the source of large non-elastic effects.  They attributed 
these non-elastic effects to stress induced ordering of Fe2+ 
and Fe3+ among octahedral sites in the lattice. The single 
crystal elastic constants of cobalt and cobalt-zinc ferrite at 
30 ºC were determined by Mc Skimin et.al., [4] using the 
phase comparison technique.  In nickel -iron ferrites, Fine 
and Kenney [5], observed an acoustic relaxation effect 
occurring at 40 K. They attributed this to stress induced 
changes in the distribution of Fe2+ and Fe3+ ions in the lat-
tice, involving electron diffusion.  They estimated the acti-
vation energy necessary for this process to take place as 
0.026 eV per electron jump. 

Gibbons [6] studied systematically acoustic relaxations in 
ferrite single crystals.  By employing composite oscilla-
tor method, he studied the elastic properties and internal 
friction of magnetite, nickel ferrite, manganese ferrite and 
manganese-zinc ferrite in the temperature range 4.2-350 
K. He found, from the acoustic wave attenuation meas-
urements, the existence of two types of stress-induced 
relaxations and a transformation.   A loss mechanism due 
to stress induced electron migration of the type Fe3+ + e 
↔ Fe2+, with an activation energy of 0.03 eV per electron 
jump appears to be common to all ferrites, containing di-
valent and trivalent ferrous ions on the octahedral sites.  

Van der Burgt [7] found that the substitution of small co-
balt content in nickel and nickel-zinc ferrites led to temper-
ature independent permeability and elasticity in the latter.  
As a result, these ferrites possess a high figure of merit, 
suitable to be used in the construction of electrical and 
electromechanical filters.  Anomalies in Young’s modulus 
and damping capacity were observed in ferrite-chromites 
of lithium [8] which were attributed to ferrite becoming a 
compensated antiferromagnetic.  Kimura and Kashihabara 
[9] measured the longitudinal and torsional velocities in 
nickel-zinc ferrites at 5 MHz using two crystal total internal 
reflection method.  The dependence of elastic modulii on 
composition and firing conditions were discussed by them.   
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The Young’s modulus as a function of magnetic field 
strength and frequency was studied in nickel ferrite by 
Kuznetsov [10].   He observed an anomaly in the Young’s 
modulus at a frequency of 72 kHz.  Kuznetsov [11] also 
found that the field dependence of ∆E and internal friction 
in nickel and nickel-zinc ferrites showed that Young’s mod-
ulus passes through a maximum at a field corresponding 
to maximum permeability of the specimen.

Novikov et.al., [12] determined Young’s modulus of two 
mixed lithium ferrites by a resonance method in the tem-
perature range 0-250 ºC.  A thermodynamic explanation 
was proposed by Belov [13] for the anomaly observed in 
the temperature dependence of Young’s modulus in the 
thulium ortho-ferrite.  In polycrystalline nickel-zinc ferrites 
Terstegge [14] studied the dependence of ∆E and me-
chanical Q factor on magnetic polarization and frequency. 
Haudek and Linke [15] excited longitudinal vibrations in 
toroids of manganese ferrite and manganese-zinc ferrites 
and studied ∆E-effect in the temperature range -150 to 
200 ºC.  They considered that a zero passage of crystal 
anisotropy  K1(T) is responsible for the observed anomaly in 
the ∆E versus T curves in manganese-zinc ferrites.

Using composite oscillator technique Seshagiri Rao et.al., 
[16] determined the elastic constants of magnesium, co-
balt, nickel and zinc ferrites at room temperature and 
mixed (Ni-Zn)Fe2O4 in the temperature range from 187 
to 720 K [17-18] and mixed (Co-Zn) Fe2O4 [19-20] in the 
temperature range of 100 to 700 K. From a study of the 
temperature dependence of elastic moduli of these ferri-
tes, Seshagiri Rao and Revathi [21] found that temperature 
dependence of elastic moduli follow Wachtman’s equa-
tions [22]. Thermoelastic and magnetoelastic behaviour of 
Co0.027Mn0.02Fe2O4 has been studied by Kaczkowski [23].  
Reddy and Reddy [24] have studied thermoelastic behav-
iour of barium ferrite, Mn0.58Zn0.42Fe2O4, Ni0.5Zn0.5Fe2O4 and 
Ni0.36Zn0.64Fe2O4 in the temperature range 80-300 K em-
ploying composite oscillator technique.

The elastic behaviour of lithium-titanium mixed ferrites and 
mixed manganese-magnesium ferrites have been studied 
by Reddy et.al., [25-26], Tanaka [27] studied the Young’s 
modulus, shear modulus and bending strength of polycrys-
talline Mn-Zn ferrites with increasing Fe2O3 and decreas-
ing oxygen content. Murthy et.al., [20, 28-31] studied the 
magnetoelastic behaviour of mixed ferrites of Ni-Zn, Co-
Zn, Mg-Mn and Li-Ni and observed the ∆E-effect.  The au-
thors have explained the ∆E-effect on the basis of domain 
rotation against uniaxial strain anisotropy and movement 
of 90º boundary walls. Murthy and Rao [31] studied the 
temperature dependence of Young’s modulus and rigidity 
modulus behaviour of polycrystalline Li-Ni ferrites and they 
found that Y versus T and G versus T followed the Wacht-
man’s relation [22].

Kawai and Ogawa [32] studied the changes of Young’s 
moduli with magnetization (∆E-effect) in (100), (110) and 
(111) directions of single crystal Mn0.82 Fe2.18 O4 in the tem-
perature range 150-300 K.   Gendelev et.al., [33] have 
grown the single crystal of Mn0.62Zn0.34Fe2.4O4 by Verneuil 
method and studied the elastic constants C11, C12 and C44.   
Komalamba et.al., [34] studied the longitudinal modulus  
versus temperature from 300 to 630 K at zero magnetic 
field and at a magnetic field of 200 Oe for various sam-
ples of MnyZn1-yFe2O4.   Belov et.al., [35] studied the elas-
tic and magnetoelastic behaviour of Erbium ortho ferrite.  
Ryabinkin and Kapitonov [36] have studied the elastic be-
haviour of Li-ferrite.  Hoffmann [37] studied the magnetic, 

magnetostrictive and elastic properties of Mg-Ni ferrites 
and found that nickel ferrite is superior to Mg-Ni ferrites 
as far as the magnetic and magnetostrictive properties are 
concerned.  Marx [38] developed a three-part composite 
oscillator method in which he used two quartz rods, one as 
a driver and the other as a guage, cemented to the speci-
men on either side of it.   This method was widely used to 
calculate the acoustic damping of the specimen by many 
works.

Reddy studied the ∆E-effect in the case of 
Mn0.58Zn0.42Fe2O4 in the temperature range 80-300 K. Us-
ing Atomic Force Acoustic Microscopy, the Young’s modu-
lus of two thin films of nano crystalline ferrites with spinel 
structures has been measured as a function of oxidation 
temperature on a nano scale by Kester et.al., [39]. Meas-
urements of the elastic tensor elements and magnetostric-
tion constants in the temperature range of 100 to 300 K 
were carried out in MnxFe3-xO4 and the elastic anisotropy 
constant K1 coefficients B1 and B2 were deduced by Kawai 
et.al., [40]. Effect of sintering temperature on elastic be-
haviour of mixed Li-Cd ferrites sintered at 1250 ºC and 
1300 ºC was studied at room temperature by Ultrasonic-
pulse transmission technique by Ravinder [41].

Elastic behaviour of manganese substituted lithium ferrites 
at room temperature was studied by the ultrasonic-pulse 
transmission technique at 1 MHz by Ravinder et.al., [42].  
Elastic behaviour of lithium-cobalt mixed ferrites has been 
investigated as a function of composition by Venudhar and 
Satyamohan [43].  An elastic behaviour in a single crystal 
of Mn ferrite (Mn0.82Fe2.18O4) was studied at temperatures 
between 280 and 730 K by longitudinal vibrations of 125 
kHz by Kawai and Ogawa [44].  

Effect of temperature on the elastic and anelastic behav-
iour of magneto- ferroelectric composites Ba0.8Pb0.2TiO3 

+ Ni0.93Co0.02Mn0.05Fe1.95O4-δ in the ferro electric rich region 
in the temperature range 300 to 600 K was carried out by 
Ramamanohar Reddy et.al., [45].   A simple system using 
one crystal composite oscillator for internal friction and 
modulus measurements was developed by Schwarz [46].   
A study of elastic behaviour and internal friction of alu-
minium substituted magnesium-copper ferrites have been 
carried at room temperature by ultrasonic pulse transmis-
sion technique by Venugopal Reddy et.al., [47].   Reddy 
and Reddy [48] have determined the Young’s modulus 
and rigidity modulus of polycrystalline Mn0.58Zn0.42Fe2O4 
using the composite oscillator technique.  Gibbons [49] 
has studied the temperature variation of ΔE in the single 
crystal Mn0.14Zn0.86Fe2O4 along <110> in the low tempera-
ture range.  A linear dependence of longitudinal velocity 
(v1) on density (ρ) for rocks having the same mean atomic 
weight (M/P), where P is the number of atoms in the struc-
tural unit and M is the molecular weight was first sug-
gested by Birch [50-51].  Simmons [52-53] has confirmed 
this evidence and showed that the shear velocity (vs) also 
varies linearly with density.  Following this work, Anderson 
[54] has demonstrated that (v1/ρ) and (vs/ρ) are constant 
for large number of oxide minerals having the same mean 
atomic weight. 

Elastic properties of mixed Li-Cu ferrites as a function of 
composition at room temperature were investigated by 
Ravinder and Vijaya Bhaskar Reddy [55].   Ravinder and 
Ravi Kumar [56] studied the elastic behaviour of rare earth 
substituted Mn-Zn ferrites.  Ravinder [57] also studied the 
elastic behaviour of lithium ferrites. Elastic behaviour of 
Cu-Zn and composition dependence of elastic behaviour 
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of mixed manganese-zinc ferrites were investigated by 
Ravinder et.al., [58-59].  

Elastic behaviour of Zn substituted LiMg and LiMgTi ferri-
tes were carried out by Nitendar Kumar et.al., [60].  Abd 
El-Ati and Tawak [61] studied the Young’s modulus of 
Ni0.65Zn0.35CuxFe2–xO4 where x = 0.0, 0.1, 0.2, 0.3, 0.4 and 
0.5, and observed that Young’s modulus decreased with 
increasing Cu content.  This is due to the fact that Cu2+ 
ions entered the lattice substitutionally for Fe3+ ions at the 
octahedral sites, creating lattice vacancies gave rise to lat-
tice strain. 

From the above review, the author notices that the experi-
mental work carriedout on the thermoelastic behaviour of 
NiMgCuZn ferrites is scanty.   In view of this, the author 
has studied the effect of temperature on the longitudinal 
modulus of nickel magnesium copper zinc ferrites and re-
sults are presented in this chapter.  It may be mentioned 
here that these NiMgCuZn ferrites are under examination 
were developed for their possible application as core ma-
terials for microinductor applications.

2.1. Elastic wave propagation in Isotropic solids: 
In a solid body, stress can be resolved into three exten-
sional and three shear components. Similarly strain pro-
duced in a body can also be resolved into six components.  
According to Hooke’s law, when strain is small, each com-
ponent of stress can be expressed as a linear combination 
of the strain components and vice versa. There may be 
large number of proportionality constants for most aniso-
tropic materials.  Triclinic system has got 21 proportionality 
or elastic constants.

For an isotropic solid, the elastic modulii are not functions 
of direction. Applying the symmetry conditions, one finds 
that the independent elastic constants are two only for an 
isotropic body.

For an anisotropic body, the six stress-strain equations are 
given by

T1 = (λ + 2µ) S1 + λ(S2 + S3) = λ ∆ + 2µS1

T2 = (λ + 2µ) S2 + λ(S1 + S3) = λ ∆ + 2µS2

T3 = (λ + 2µ) S3 + λ(S1 + S2) = λ ∆ + 2µS2

T4 = µ S4

T5 = µ S5

T6 = µ S6        …. (1)

where

∆ = S1 + S2 + S3        …. (2)

Ti’s are six stresses

Sj’s are six strains

λ and µ are the two Lame’ constants.

The other three constants of fundamental importance are 
Young’s modulus (E), bulk modulus (K) and the Poisson’s ra-
tio (σ).  Young’s modulus may be expressed as the ratio of 
longitudinal stress to longitudinal strain in a bar, when ex-
tensional stress in applied only along one axis.  When the 

extensional stress is applied along Z-axis,

T1 = T2 = 0.

Solving for the ratio of T3 to S3 by eliminating S1 and S2 
from Eqn. (1) Young’s modulus E can be obtained.

Therefore,
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The bulk modulus K is defined as the ratio of hydrostatic 
pressure p to the relative change in volume of the mate-
rial.
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Applying Newton’s second law of motion, the equations 
of motion for waves in an unbounded medium can be de-
rived.  If an elementary cube of volume dx dy dz is consid-
ered, the equations derived from Newton’s laws of motion 
are

 dx dy dz = Fi ( i =1, 2, 3)    .... (8)

where ui are the displacements viz., u, v and w along the 
1-, 2- and 3- axis respectively and ρ is the density of the 
solid.  The force components Fi in the three directions are 
determined by the rate of change of stress along the edg-
es of the unit volume and can be written as

Fi 
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Eqn. (8) can be written as

2

2

t
ui

∂
∂

ρ  dx dy dz = 
j

ij

X
T

∂

∂
 dx dy dz      ….  (10)

But each stress component is related to its correspond-
ing strain component through the elastic constant Cijkl, and 
hence
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For an isotropic solid, the above equation reduces to the 
three well known equations as given below.
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where ∆ = S1 + S2 + S3    
 
According to Christoffel, the equation of motion for the 
Eqn. (12) could be written in terms of u, v, w and s (where 
s = lx + my + nz and l, m, n are the direction cosines of 
the normal to the plane wave) by introducing a series of 
moduli λ11 to λ33 which are functions of the Lame’ con-
stants and the direction cosines l, m, n. 

Hence, Eqn. (12) assumes the form

                                                               
 ….  (13)

where 

λ11 = l2 ( λ + µ) + µ

λ12 = lm (λ + µ)

λ13 = nl (λ + µ)

λ23 = mn (λ + µ)

λ22 = m2 (λ + µ) + µ

λ33 = n2 (λ + µ) + µ        ....   (14)

For the isotropic medium, the solution for Eqn. (14) indi-
cates the propagation of three waves. The particle motion 
in a direction perpendicular to the direction of propaga-
tion is possible only in certain special cases.  However, the 
three velocities satisfy the equation

                                                               ….  (15)

Evaluating the determinant and using the relation for the 
direction cosines

I2 + m2 + n2 = 1              …. (16)

Eqn. (15) becomes

(λ + 2 µ - ρ v2) (µ - ρ v2)2 = 0  ....  (17)

Thus, independent of the orientation employed, there is 
one wave with velocity v1 in which the particle vibration is 
in the direction of propagation (a longitudinal wave), and 
two waves with velocity vs, for which the direction of par-
ticle vibration is normal to the direction of wave propaga-
tion (shear wave)

2
1

2
1 







 +
=

ρ
µλv  ;   v2 = [µ/ρ]1/2 = [G/ρ]1/2     ….  (18)

where v1 and vs represent the longitudinal and (shear wave) 
velocities respectively.

Thus, using Eqns. (3), (7) and (18), we can evaluate the 
Young’s modulus (E), bulk modulus (K), rigidity modulus (G) 
and Lame’ constants λ and µ.

2.2. Brief review of experimental methods employed for 
measurements of elastic constants of solids: 
A brief review of the different experimental techniques em-
ployed to study the elastic behaviour of solid materials is 
presented in this section.

The methods can be broadly classified into four catego-
ries, they are - (i) static methods, (ii) dynamic methods, (iii) 
X-ray methods and (iv) ultrasonic methods. Static meth-
ods give isothermal moduli whereas the dynamic methods 
based on resonance techniques give usually the adiabatic 
moduli.

(a) Static methods
The early methods used were static ones consisting of 
bending and twisting of crystal plates and crystal bars un-
der investigation, to determine the elastic constants of the 
crystals. In the classical experiments, Voigt [62] has made 
use of the above principles.  Refinements in these experi-
ments were later on introduced by Tutton [63] incorporat-
ing interferometric techniques for the measurement of 
strains.  A follow up of the improved static methods was 
carriedout by Bridgman [64], Mandell [65], Hanson [66], 
Hinz [67], Swift and Tyndall [68] and others. The chief 
drawback of these static methods is that they are not 
suitable for the determination of the elastic constants of 
solids, when samples are available in small sizes. Hence 
a number of dynamic resonance methods have been de-
veloped for the measurement of the elastic modulii of the 
solids.

(b) Dynamic methods
In dynamic methods, generally the specimen is set into 
vibration employing an electrostatic or electromagnetic or 
magnetostrictive or piezoelectric transducer. Direct applica-
tion of vibration methods to crystals have been made by 
Wright [69], Davies [70], Goens [71], Mason [72] and Hunt-
er and Siegel [73].

Vibrational studies of plates have also been used to meas-
ure elastic constants, particularly for piezoelectric crystals.  
Atanasoff and Hart [74] in their method used crystals di-
rectly in the electrical circuits.  This method was employed 
by Bhagavantam and Suryanarayana [75] to determine the 
elastic constants of tourmaline and zinc blende crystals. 
This method has got a very restricted application and the 
results obtained are to be corrected for the influence of pi-
ezoelectric effects.

To study the elastic properties of rock specimens, Ide [76] 
used the electrostatic method of exciting the specimen 
into vibrations. To determine the velocity of extensional 
waves in metals such as lead, tin, aluminium and cadmi-
um up to their melting points, Bordoni [77] adopted this 
method.

For setting rods into torsional and longitudinal vibrations, 
Fine [78] and Wegel and Walther [79] described a meth-
od using a magnetic device.  Forster [80] and Forster and 
Koster [81], developed resonance methods where in flexur-
al vibrations are excited in the rods by an electromagnetic 
drive.  Spinner [82] also adopted this method to excite 
torsional vibrations in isotropic bars. Several other workers 
employed this method to study the elastic properties of re-
fractory oxides.  Bradfield [83] reviewed the use of magne-
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tostrictive transducers to excite the longitudinal and shear 
vibrations of rock samples. Van der Burgt [84] determined 
the dynamic constants of nickel and nickel-zinc ferrites us-
ing a magnetostrictive method.

(c) X-ray methods
X-ray method of determining the elastic constants by 
measuring the intensity of the monochromatic X-rays, 
which in turn interact with the lattice vibrations, has been 
sued by Curien [85], Jacobsen [86] and Johnson [87] to 
determine the force constants of iron, copper and zinc.  
Gunther [88] used X-ray diffraction technique to meas-
ure the elastic constants of aluminum.  Wooster and Ra-
machandran’s [89] approach depends on the coherently 
diffracted X-radiation which is scattered by the interaction 
with the thermal waves of the lattice. In these methods, 
the absolute accuracy that is attainable is poor compared 
to that achieved in dynamic methods.

(d) Ultrasonic methods   
Bergmann and Schaefer [90] were the earliest workers to 
make use of the piezoelectric phenomenon of quartz for 
a study of crystal elasticity.  In their method a fair sized, 
well polished and transparent cube of the material is set 
into vibration by a quartz crystal.  Due to couplings at the 
boundaries and reflections of the waves, both longitudinal 
and torsional, a sort of three-dimensional grating will be 
set up in the cube. If light from a circular aperture travers-
es such a medium, characteristic diffraction pattern results.  
The elastic constants are determined from the dimensions 
of the diffraction pattern, a constant that is characteristic of 
the experimental set up and the operating frequency.  This 
method is obviously suitable for transparent solids. But, in 
a later development [91], the method is applied to opaque 
bodies also.  Here the light is reflected from the surface 
of the vibrating specimen, the difficulty with this method 
lies in that to get fairly intense diffraction patterns, one 
has to apply a large amount of power to the crystal which 
involved temperature fluctuations in the specimen.  This 
makes it particularly unsuitable for applying the method 
to a study of the temperature dependence of elastic con-
stants.  Further the accuracy attainable is often only of the 
order of 5 per cent or higher.

Hiedemann and his co-workers [92] utilizing the phenome-
non of diffraction of light by ultrasonic waves developed a 
technique for determining the elastic constants of isotropic 
solids. Later on, this method was extended to crystals also 
by Bhagavantam and Ramachandra Rao [93].   For success-
ful application of this method, one has to employ well pol-
ished crystals at high frequencies.

Some of the defects pointed in the above methods have 
been eliminated in the wedge method developed by 
Bhagavantam and Bhimasenachar [94].  It concerns with 
the study of the vibrational modes of non-piezoelectric 
crystal plates.   Also, this method has the obvious advan-
tage of being applicable to opaque media. The specimen 
in the form of a plate is excited by a quartz wedge driven 
by an alternating current of variable frequency there by 
providing a continuous supersonic spectrum. The specimen 
is in contact with a liquid through which a light beam is 
passed.  As the exciting frequency is varied, an appropri-
ate portion of the wedge resonates and produces an ul-
trasonic beam of the same frequency.  These resonant fre-
quencies of the specimen are detected by the maximum in 
the diffraction effects on the light produced by the ultra-
sonic grating in the liquid.  The transmission frequencies 
thus measured have to be sorted out and assigned to their 

appropriate modes.  A sufficient number of such determi-
nations permit one to calculate the complete set of the 
elastic constants.  This method has an advantage because 
one can use every small specimen for determining elastic 
constants.  This fact facilitated the determinations of the 
elastic constants of diamond [95].  In these experiments, 
the frequency range employed is form 0.5 to 10 MHz and 
the accuracy realizable is about five per cent.

A major drawback of this method is that the specimen 
under investigation comes into contact with liquid.  This 
method cannot be applied to substances which have a 
tendency to absorb liquid.  The same defect makes it un-
suitable for the temperature work also.

The advent of radar techniques has made available, in 
recent years, electronic methods for the timing of short 
high frequency pulses of ultrasonic power.  The method 
has been employed to study the elastic constants of the 
solids by Huntington [96], Arenberg [97], McSkimin [98], 
Bacon and Smith [99] and Musgrave [100].  A quartz crys-
tal is cemented to one of the two plane parallel faces of 
the specimen. A pulse of the order of microsecond dura-
tion is generated and transmitted through the specimen.  
On reflection at the opposite surface, it returns and when 
it arrives back at the quartz transducer, it gives rise to an 
electrical signal or echo. It is possible to observe a whole 
sequence of such echoes and this makes possible the 
measurement of transit time more accurately. X-cut quartz 
and Y-cut quartz transducers having resonant frequen-
cies at 10 MHz are usually employed to excite longitudi-
nal and transverse waves respectively. The pulse technique 
has proved valuable in the study of the influence of tem-
perature [101-103] and pressure [104-106] on the elastic 
constants of crystals.  Accuracy better than one percent is 
easily achievable in this method.  Interferometry has been 
combined with pulse technique to attain higher precision 
in the velocity measurements with small specimens [107-
109]. The specimens are mounted on the ends of fused 
quartz rods so the initial pulse.  The pulse length can be 
extended until several pulses overlap.  The frequency is 
varied until the condition for constructive interference is in-
dicated by a clear step pattern in the overlapping echoes. 
In obtaining acoustic velocity from differences between 
these resonant frequencies the phase shifts introduced due 
to reflections at the boundaries of the specimen have to 
be taken into account.

But all the ultrasonic methods, with the exception of pulse 
technique, have one defect or the other, because of which 
they are not suitable for the study of the elastic constants 
as a function of temperature.

All these defects are taken care of in the composite pi-
ezoelectric resonator technique developed originally by 
Balamuth [110] and Rose [111].   In this technique, a small 
sample in the form of a rod with square or circular cross-
section is cemented to a piezoelectric crystal. Determi-
nation of the resonant frequencies of the quartz and the 
composite system makes it possible to calculate the natu-
ral frequency of the specimen and thereby its elastic con-
stants.

In the present work in order to study the temperature 
variation of longitudinal modulus (L) of nickel magnesium 
copper and zinc ferrites the author has developed a two 
component piezoelectric resonator technique, the details 
of which are presented in the next section.  This work has 
been under taken to study the longitudinal modulus of 
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these ferrites to test their suitability as core materials used 
for micro inductor applications. 

2.3. Composite oscillator technique: 
In the present investigation the composite piezoelectric os-
cillator technique originally developed by Balamuth [110] 
and Rose [111] with a few modifications has been set up in 
this laboratory.

(a) Theory of the composite piezoelectric oscillator 
method
Composite resonator technique is based on the princi-
ple of determination of the natural frequency of a loaded 
bar executing either longitudinal or torsional oscillations. 
A precision electrical oscillator is used to excite an X-cut 
quartz transducer of suitable length and resonance is de-
tected by observing the amplitude of the resulting current. 
The system attains a state of forced vibrations owing to 
the harmonically varying piezoelectric stress in the quartz 
which accompanies the electric field between the elec-
trodes.  The frequency of the forced vibration is the same 
as that of the applied potential difference. Thus the natural 
frequency of the quartz bar is known. The test specimen 
of identical cross-section having a natural frequency slightly 
different from that of the quartz transducer is cemented 
to one end of the quartz bar with a suitable adhesive and 
the fundamental resonant frequency of the composite sys-
tem is measured in the same manner. The frequency of the 
specimen bar is then deduced from which the appropriate 
elastic constant is calculated using the length and density 
of the specimen.  Similarly for exciting torsional oscilla-
tions, a Y-cut quartz rod with four electrodes is used. The 
impedance of the quartz crystal and the composite system 
undergoes a marked reduction at their respective resonant 
frequencies. Hence this method needs an expression sys-
tem and the quartz with their respective impedances. The 
theoretical treatment as given by Balamuth [110] is briefly 
outlined here.

According to Van Dyke [112] the charge necessary to es-
tablish to potential difference (V) between the electrodes 
of the transducer can be separated into two parts (i) the 
ordinary capacitive part equal to C’ where C’ is the intere-
lectrode capacitance and (ii) that required to neutralize the 
piezoelectric charge produced by the vibrational strain in 
the quartz and proportional to the space average value of 
its strain given by k’εSav.

The net charge Q is given by

Q = C’V- k’εSav.    ….  (19)

where ε, k’ and Sav represent appropriate piezoelectric co-
efficient, geometric constant and average strain respec-
tively.

The current I flowing through the oscillator is given by 

    ….  (20)

The piezoelectric stress in the quartz cylinder is represent-
ed by harmonically varying surface tractions over its end 
faces. The equation of motion of the oscillator is of the 
form,

  ….  (21) 

where u, ρ, p and T represent particle displacement, den-
sity, the appropriate elastic modulus and dissipation coef-

ficient respectively. 

The particle displacement u in each medium is given by

u = [ A exp ( α + jβ) x + B exp – ( α+ jβ) x] ejωt ….   (22)

where

ω = 2 πf

α = ω (ρ/p)1/2

β = 

Since T is sufficiently small ω2 T2 << 1.  The four amplitude 
coefficients (A and B of each medium) are evaluated by 
means of the four simultaneous equations which express 
the continuity of stress and displacement at the interface 
and of stress at the end faced of the oscillator respectively. 
The strain average Sav is calculated from the expression for 
u in the quartz and the electrical impedance of the oscilla-
tor from Eq. (20).  The electrical impedance Z can be writ-
ten as

1/Z = j ω C’ + 1/Zm    ….(23)

In the vicinity of the resonance, the form of expression 
for Zm is the same as that for the electrical impedance of 
a series resonant circuit.  It follows that, near resonance, 
a composite resonator is electrical equivalent to a series 
electrical network of impedance Zm shunted by a capaci-
tance C’.

If Zm is written in the form

Zm = R + jx         …. (24)

Then for a two part oscillator (quartz transducer and speci-
men)
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k    = a constant

Mi  = mass of the cylinder (i = 1, 2)

Zi   = αi Li

Li   = length of the cylinder (i = 1, 2)

Yi = 
if
fπ

fi   =  (1/2Li) (pi/ρi)
1/2

pi = (tan Yi ) / Yi

where, f is frequency of the composite system and sub-
script 1 and 2 refer to specimen and quartz respectively.  
The resonant frequencies are those at which the reactive 
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part vanishes, i.e. M1 p1 + M2 p2 = 0 

  
                                                  ….  (27)

when M1 =0, Eqn. (27) describes the behaviour of quartz 
alone.   Frequency of the specimen f1 can be computed 
from the Eqn. (27) by knowing f and f2.

An approximate solution for Eqn. (27) may be given as

f1 = f + (M2/M1) (f-f2)    
   …. (28)

Eqn. (28) can be used only if f, f1 and f2 differ by about 
10%.

This condition is always satisfied throughout the present in-
vestigation.

The natural frequencies of the specimen for longitudinal vi-
brations may be written as

f1 = 1/2L (E/ρ)1/2   ….  (29)

where E, L, σ and A represents the Young’s modulus, 
length, Poisson’s ratio and area of cross-section of the 
sample, and

 

is the moment of inertia of rectangular parallelopiped 
(specimen) about the cylinder axis. a and b represent the 
thickness and breadth of the sample respectively. M repre-
sents the mass of the specimen.

The equation (29) can be written as

f1 = 1/2L (E/ρ)1/2     …. (30)

The resonant frequency of the torsional vibrations fs is re-
lated to the dimensions of the specimen by the formula

fs = 1/2L (G/ρ)1/2             …. (31)

where G represents the rigidity modulus.

Since the value of σ is generally small, it can be neglected 
for calculating Young’s modulus (E) from Eqn. (31). How-
ever, σ may be computed with sufficient accuracy with ap-
proximate values of elastic constants obtained when the 
term is set equal to zero and this value of σ is used to ob-
tain the correction.  Using this value of σ the final value of 
E is obtained from Eqn. (31).

(b) Description of the experimental setup
The block diagram of the composite oscillator technique 
employed to excite and detect the resonant vibrations of 
the piezoelectric oscillator is shown in Fig.1. Radio fre-
quency output from the signal generator SG (designed and 
rigged up in this laboratory) is connected across a turned 
circuit which is loosely coupled to the output stage of the 
amplifier. The frequency of the signal generator is con-
trolled in part by an incremental turning capacitor whose 
full scale represents 2 kHz in the range 80 to 200 kHz. The 
stability of the signal generator is better than 5 Hz. The ac-
tual frequency of the signal generator has been measured 
using Yamuna Digital Frequency Counter Model 626, capa-
ble of giving accuracy 1 in 106.

To keep the voltage across the crystal constant, a regulat-
ed voltage is supplied to the amplifier.  In this set up by 
changing the output from the signal generator the voltage 
across the crystal can be changed from 2 to 200 V.

The composite bar and the loading circuit form a parallel 
tuned circuit and so its impedance is maximum at reso-
nance. A micro ammeter in series with the crystal diode 
lN34 is used as a detector to trace the response of the 
coupled circuit. The resonant frequency of the oscillator is 
indicated by a minimum deflection in the micro ammeter.

(c) Preparation of quartz crystals
X-cut quartz bars of square cross-section as shown in Fig.2 
are used for exciting longitudinal vibrations in the speci-
men.  The faces normal to the electric axis are silvered and 
supported by the crystal holder at its nodal points.  The 
crystal holder contains two porcelain rods mounted on a 
porcelain base.  Two phosphor bronze strips bent in the 
form shown in Fig.2 are fixed to the porcelain bars.  Silver 
tips are attached to the phosphor bronze strips to form the 
electrodes for good contact with the crystal.  The quartz 
bars used are 4mm square in cross-section.

The quartz selected for preparing X-cut the transducers 
should satisfy the following requirements.
(i) The frequency versus temperature graph of the quartz 

should not be discontinuous.
(ii) In preparing the quartz transducer sufficient care must 

be taken to avoid the harmonics of the low frequency 
flexural modes lying very close to the natural frequency 
from the mode of vibration to the other.

 
A set of quartz transducers were prepared from the natural 
quartz crystal free from the defects. Each specimen under 
investigation has to be tried with different quartz transduc-
ers so as to satisfy the condition that the frequency of the 
composite oscillator and that of quartz lie within 10%.

Basic data of the quartz transducer employed in the pre-
sent investigation are given in the Table.1.

(d) Cementing
The composite oscillator is formed by cementing the 
quartz rod to the specimen of identical cross-section.  For 
room temperature measurements, phenyl salicylate com-
monly known as “salol” is used as the bonding material. 
For the high temperature work, the adhesive that can be 
used consists of five parts of sodium metasilicate and one 
part of calcium carbonate. These chemicals should be thor-
oughly powdered to micron size and mixed with a drop 
or two of double distilled water so as to form a very fine 
paste. A thin layer of this paste is used for bonding the 
transducer with the specimen. The composite system so 
formed is to be kept under pressure at least for about 24 
hours at room temperature before it is put into use at high 
temperatures. The following precautions are to be taken in 
the process of cementing.

(i) A thin layer of adhesive is to be used. As pointed out 
by Balamuth [110], the effect of the cement is negligi-
ble on the frequency of the composite system provid-
ed the frequencies of the specimen and the composite 
system are within 5 to 10%. The condition is satisfied 
throughout the present investigation. 

(ii) There should not be any amount of cement left off ad-
hering to the sides of the composite system. Such ex-
cess if left produces loading effects in the composite 
oscillator.
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(e) Temperature study
Using the two-part composite piezoelectric oscillator, lon-
gitudinal modulus was measured upto a temperature of ≈ 
400 ºC in the present investigation.  An electric furnace 
which can go up to 450 ºC has been constructed and 
used in the present investigation.  The electric furnace 
consists of a thick fused silica tube over which nichrome 
wire of sufficient length was wound at regular intervals 
non-inductively.  To avoid loss of heat due to radiation, 
a thick lining of ceramic wool padding was given on the 
nichrome wire and kept in a cylindrical asbestos tube.  The 
space between this silica tube and asbestos tube was filled 
with ceramic wool.  The cylindrical tube was closed with 
porcelain lid consisting of the crystal holder arrangement. 
The temperature of the furnace was raised by passing 
current through the heating element by a variac.  The tem-
perature of the furnace could be controller to any desired 
value with an accuracy of ± 0.2 K using CPC (Consolidat-
ed Process and Controls Pvt Ltd., Bangalore) temperature 
controller-indicator Digit Temp 102.  A cromel-alumel ther-
mocouple which acts as both temperature sensing and 
controlling element was inserted into the furnace through 
the hole provided for it without touching the sample but 
situated very close to it.  The composite oscillator was sus-
pended inside the furnace such that its axis exactly coin-
cides with the axis of the cylindrical furnace.

(f).  Accuracy of the method
The chief source of error in this method of measurement 
is non-uniformity of the cross-section in the specimens. 
Such non-uniformity produces a small shift parallel to itself 
of the entire velocity versus temperature curve. The esti-
mated uncertainty in the absolute measured velocities is 
0.5 to 1%. However, greater accuracy can be achieved in 
making relative measurements of the velocities rather than 
their absolute values.  These factors have been taken into 
account while fitting the curves to observed points.

2.4. Thermo elastic behavior of sodium chloride com-
parison with the literature data: 
To test the reliability of the composite piezoelectric oscil-
lator technique developed in the present investigation, 
measurement of S11 as a function of temperature has been 
made on single crystal specimens of sodium chloride 
grown from Bridgman technique has been used.

The values of elastic compliances S11 at different temper-
atures obtained in the present work are presented in the 
Table.2. The present data is compared with the values ob-
tained by Hunter and Siegel [73].

An examination of the data presented in the Table.2 shows 
that there is a good agreement between the compliance 
values of present work and that of literature. This estab-
lishes the reliability of the composite-oscillator technique 
developed in the present investigation.

3. Experimental methods: 
In the present investigation, the three series of NiMgCuZn 
ferrites were synthesized

Series - I. Nix Mg0.6-xCu0.1Zn0.3Fe2O4 where ‘x’ varies from 
0.0, 0.1, 0.2 and 0.3 Series – II. Ni0.3 MgxCu0.1Zn0.6 -xFe2O4, 
where ‘x’ varies from 0.1, 0.2 and 0.3 Series – III. Ni0.35 
MgxCu0.05 Zn0.6-xFe2O4 where ‘x’ varies from 0.0, 0.1and 0.2

In the present investigation, the nickel-magnesium-copper-
zinc ferrites were prepared by employing conventional 
solid state reaction route by mixing analytical grade NiO, 

MgO, CuO, ZnO and Fe2O3 in stoichiometric proportions. 
These oxides were mixed and ground together using ag-
ate mortar for 8 hours. This mixture was pressed into a 
cake and presintered at 800 ºC for 12 hours taking enough 
care to avoid the evaporation of zinc and is cooled to 
room temperature. The pre-sintered cake was crushed and 
was ground in agate mortar to obtain fine particle size. 
This powder was sieved to obtain uniform particle size.

These mixed powders were pressed with the help of the 
hydraulic press applying a pressure of 25 kN using a high 
carbon high chromium steel die into the required shape. 
The binder used in the present work is 2% polyvinyl alco-
hol, dissolved in the water. Occasionally stearic acid dis-
solved in the acetone was also used as lubricant to pre-
vent sticking of powder to the walls of the die. Various 
desirable shapes like pellets, bars, cylinders and torroids 
depending on the requirement of the experimental tech-
nique, the green powders of the  ferrites  were pressed 
in suitable dies and they were loaded on a ceramic block 
containing ‘V’ shaped grooves to prevent bending of the 
samples during the final sintering process at high temper-
atures. After loading the ceramic block in to the furnace, 
the temperature of the furnace was raised to 110 ºC in a 
period of 1 hr and maintained at 110 ºC to remove the 
residual water content if any from the samples. Then the 
furnace temperature was raised to 800 ºC at the rate of 
80 ºC / hr and maintained there for one more hour for 
the burning of binder used in the samples. Bars of square 
cross section of 4 x mm x 4 x mm and 2.05 x cm were 
prepared in order to study the effect of temperature on in-
ternal friction loss and longitudinal modulus in these fer-
rites Lastly, the final temperature of 1250 ºC was achieved 
at the rate of 100 ºC / hr. A soaking time of 3 hrs is main-
tained and later, the samples were cooled to room tem-
perature at the rate of 80 ºC / hr. After cooling, the sam-
ples were removed from the furnace. Enough care was 
taken to avoid the evaporation of zinc during the sintering 
process.

4. Results: 
X-ray diffraction patterns obtained in the present investiga-
tion for various ferrites are presented in Fig.3. An examina-
tion of these X-ray diffractograms shows that these ferrite 
samples reveal the formation of single phase cubic spinel 
structure. 

The lattice parameter (a), the unit cell volume (V) and den-
sity (ρ) of all the samples are calculated. The lattice param-
eters in series I decrease with decreasing Mg2+ content, 
where as in series II and III the simultaneous increase and 
decrease of magnesium and zinc results in a nominal de-
crease of lattice parameters.

The typical scanning electron micrographs of a few ferrite 
samples are presented in Fig.4. An examination of these 
figures shows that there is no second phase formation.

5. Discussions: 
Table.3 represents the longitudinal modulus data for dif-
ferent compositions of the all the three series at room 
temperature. The temperature variation of longitudinal 
modulus data for series I is graphically shown in Fig.5. In 
the absence of any phase transition in most of the solids 
the velocity decreases with an increase in temperature, and 
hence the modulus also decreases with temperature.

According to Eyring and Kincoid [113-114] the sound wave 
travels with infinite velocity within the atom and with a 
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gas kinetic velocity in the void space between the atoms. 
Hence, the velocity in a close packed arrangement of at-
oms is more than in the loose packed arrangement of the 
same atoms. Due to the thermal expansion of the solid, 
the interatomic distance increases which in turn decreases 
the velocity and hence, the modulus. This behaviour is 
observed in all the samples near the Curie temperature 
marked by arrows. Fig.5 indicates that there is a system-
atic decrease of longitudinal modulus as a function of tem-
perature. Also it can be seen in all that there is a sharp 
fall in modulus at a particular temperature which exactly 
coincides with the Curie temperature transition. Hence be-
low Tc the ferrite samples are in ferrimagnetic phase and 
above Tc the sample show paramagnetic phase. The Curie 
temperature data and the temperatures corresponding to 
sharp falls in all the graphs are shown in Table.3 for com-
parison. Since the ferrites are ferrimagnetic solids as the 
temperature increases they transform from ferrimagnetic 
phase to paramagnetic at certain temperature called Curie 
temperature. Where they lose their domain structure and 
the magnetic dipoles become free. This is a phenomenon 
that is connected to the lattice, hence the longitudinal 
modulus shows a lattice instability at Tc, which is depicted 
by a sharp fall at Tc in longitudinal modulus versus tem-
perature behaviour. Changes in the elastic moduli usually 
accompany changes of phase. This type of discontinuous 
behaviour in modulus was reported by Koster and Banger 
[115] in Hume-Rothery alloys. Young’s modulus falls discon-
tinuously, sometimes by a factor of two and the internal 
friction shows a sharp peak in the same region [116].

Since the elastic modulus is a lattice related property it 
clearly depicts the changes in the unit cell and hence 
shows phase transitions in an unambiguous way. As the 
nickel composition in this ferrite series increases the Curie 
temperature increases.

The temperature variation of longitudinal modulus data for 
this series II and series III is diagrammatically represented 
in Figs. 6 and 7. A glance at the figures indicates that the 
phase transition occurs at Curie temperature for all the 
compositions. One can see from the figures that there is 
a systematic decrease of longitudinal modulus as a func-
tion of temperature. As the magnesium content in the fer-
rite system increases the temperature corresponding to the 
abrupt fall in longitudinal modulus shifts to higher temper-
ature side, a discontinuity is noticed in longitudinal modu-
lus versus temperature.

As explained earlier, the temperature corresponding to 
these abrupt falls in modulus exactly coincide with the Cu-
rie temperature transition

6. Conclusions: 
Finally, we have addressed some relevant findings on the 
importance NiMgCuZn ferrites that longitudinal modu-
lus can be used as a powerful tool to examine the phase 
transitions in solids. Studies reveals that the formation of 
single phase spinel structure of all the samples. The lattice 
constant (a) unitcell volume (V) were estimated. 

microstructural studies with the help of scanning electron 
microscopy (SEM) revealed uniform grain structure 

The elastic behaviour of these ferrites revealed that there 
are abrupt falls at Curie Temperatures where these ferrite 
samples transform from ferromagnetic phase to paramag-
netic phase. 
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Table.1. Basic data of quartz transducers employed in 
the present investigation.

Type of
quartz
transducer

No.
Mass
m x 103

(kg)

Natural fre-
quency
fc

(kHz)

X-cut

1 0.8144 130.253

2 0.7274 142.150

3 0.6299 144.460

4 0.5350 147.844
 
Table.2 . Elastic compliance S11 of sodium chloride at 
different temperatures.
fc of quartz transducer employed 144.460 kHz.

T

(0C)

L x 102

(m)

ρ x 102

(Kg m-3)

fs

(kHz)

S11 x 1012

Present

Study

Hunter and

Siegel 75
30 1.4724 2.1685 152.471 22.87 22.87

60 1.4744 2.1604 150.395 23.54 23.61

80 1.4768 2.1550 148.495 24.12 24.10

100 1.4792 2.1494 147.219 24.53 24.53

120 1.4816 2.1438 145.771 25.00 25.00

170 1.4856 2.1295 141.829 26.44 26.43

225 1.4911 2.1135 137.589 28.10 28.10

270 1.4947 2.1000 134.400 29.50 29.51

330 1.4983 2.0817 129.409 31.94 31.92

Table 3. Variation of longitudinal modulus with composi-
tion in NiMgCuZnFe2O4 system.
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Table 4. Lattice parameter and density values of all the 
three series of NiMgCuZn ferrites at room temperature.

Fig.1. Block Diagram of Composite Oscillator.

Fig.2 Electrode arrangement and mounting of X- Cut 
quartz crystal.

(a)

(b)

Fig.3. X-ray diffractograms for (a) Series 1, X = 0.1 (b) 
Series 2 , X = 0.3 

(a)

 
(b)
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(c)
Fig.4 SEM patterns for (a) Series 1 (b) Series 2 and (c) 
Series 3.

Fig.5 Variation of longitudinal modulus with tempera-
ture for series I 

Fig.6 Variation of longitudinal modulus with tempera-
ture for series II
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Fig.7 Variation of longitudinal modulus with tempera-
ture for series III
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