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ABSTRACT Perchance one of the nonlinear systems the majority premeditated and investigated is the simple pendu-
lum. The periodic steps forward revealed by a simple pendulum is harmonic only for tiny angle oscilla-

tions. Further than this limit, the equation of motion is nonlinear. The simple harmonic motion is inadequate to sculpt 
the oscillation motion for hefty amplitudes and in such cases the period depends on amplitude. Appliance of Newton’s 
second law to this physical system furnishes a differential equation with a nonlinear term (the sine of an angle). It is 
feasible to discover the integral articulation for the period of the pendulum and to articulate it in terms of elliptic 
functions. Even though it is potential in numerous cases to restore the nonlinear differential equation by an analogous 
linear differential equation that approximates the source equation, such linearization is not forever reasonable. In such 
cases, the genuine nonlinear differential equation ought to be honestly treated with. 

1. Introduction:

There have been two chief fashions in the chronological maturity of differential     equations [1].

The first trend is illustrated by challenges to discover explicit elucidations, either in congested

form which is infrequently possible or in requisites of power series. In the second, one abandons 

all hope of solving equations in any traditional sense, and instead concentrates on a search for 

qualitative information about the general behavior of solutions [2-3]. We imposed this tip of 

scrutiny to linear equations. But the qualitative hypothesis of nonlinear differential equations is 

utterly special [4]. The hypothesis of linear differential equations has been premeditated

genuinely and expansively for the past 200 years, and is a comparatively complete and pleasing

body of awareness [5]. However, exceptionally miniature of general scenery is branded about 

nonlinear equations.

2. The purpose of study:

Our purpose here is to survey some of the innermost dreams and processes of this focus, and 

furthermore to make obvious that it presents a ample variety of fascinating and idiosyncratic

novel phenomena that do not materialize in the linear hypothesis. Most of these occurrences can 

be handled somewhat straightforwardly with the exclusive of the aids of chic mathematical 

utensils and in reality necessitate little more than straightforward differential equations and two 

dimensional vector algebra [6].

3. Why should one be fascinated in nonlinear differential equations?

The indispensable basis is that numerous physical systems and the equations that portray them 

are minimally nonlinear from the outset [6]. The accustomed linearization is approximating 

contrivance that is somewhat affirmation of trounce in the ambush of the original nonlinear 

problems and partly expressions of the sensible view that half a loaf is better than none [6]. It 

should be added at once that there are numerous physical circumstances in which a linear 

approximation is precious and passable for a good number of principles [6]. This does not amend

the reality that in various other circumstances linearization is unpardonable [6]. It has been still

recommended by Einstein that since the essential equations of physics are nonlinear, all of 

mathematical physics will have to be prepared for a second time [6].

4. Simple pendulum without the damping force:

It is somewhat uncomplicated to bestow straightforward paradigms of problems that are 

fundamentally nonlinear [6]. For instance, if ‘𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)’ is the angle of deviation of an un-damped 

pendulum of length ‘𝑙𝑙𝑙𝑙0’ whose bob has mass ‘𝑚𝑚𝑚𝑚0’, then its equation of motion has been solved 

and studied earlier using elliptic functions [7]. Therefore we will furnish the exact solutions for 

the damped pendulum.

5. Simple pendulum with the damping force:

When viscous damping proportional to velocity of the bob is taken into description, the equation 

of motion has not been deciphered exactly hitherto and hence transform procedures are espoused

(Laplace, Fourier...etc.,) to turn up an exact solution using favorable boundary values or initial 

conditions. If the sine function is not approximated, meticulousness can be brought about, 

knowing the mass ‘𝑚𝑚𝑚𝑚0’ and the damping co-efficient ‘𝐶𝐶𝐶𝐶’ [6-10].

If there is present a damping force proportional to the velocity of the bob, the equation of motion 

becomes [6]

𝑑𝑑𝑑𝑑2[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)]
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2 +

𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

𝑑𝑑𝑑𝑑[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)]
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙0

sin[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] = 0   
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��̈�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)� +
𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

��̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)� +
𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙0

sin[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] = 0

- (5.1)

Since Fourier transform is inapplicable in this context, the appropriate transform shall be Laplace

transform only. . .̇ Applying the Laplace transform on both sides,

𝐿𝐿𝐿𝐿��̈�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)� +
𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

𝐿𝐿𝐿𝐿��̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)� +
𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙0

L�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)]� = 𝐿𝐿𝐿𝐿[0]

{𝑠𝑠𝑠𝑠2𝐿𝐿𝐿𝐿[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] − 𝑠𝑠𝑠𝑠 [𝜃𝜃𝜃𝜃(0)]−��̇�𝜃𝜃𝜃(0)�} +
𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

{𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] − [𝜃𝜃𝜃𝜃(0)]} +
𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙0
�

1
s2 + 1

� = 0

- (5.2)

To solve the above equation we will use the following conditions, initial angular 

displacement 𝜃𝜃𝜃𝜃(0) = 0, and initial angular velocity �̇�𝜃𝜃𝜃(0) = 0.

�𝑠𝑠𝑠𝑠2 +
𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

𝑠𝑠𝑠𝑠� 𝐿𝐿𝐿𝐿[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] =  −
𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙0
�

1
s2 + 1

�

𝐿𝐿𝐿𝐿[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] =  −
𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙0
�

1

�𝑠𝑠𝑠𝑠2 + 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

𝑠𝑠𝑠𝑠� [s2 + 1]
�

𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡) =  −
𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙0
𝐿𝐿𝐿𝐿−1 �

1

[s] �𝑠𝑠𝑠𝑠 + 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

� [s2 + 1]
�

- (5.3)

Let �
1

[s] �𝑠𝑠𝑠𝑠 + 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

� [s2 + 1]
� =  �

A1

s
+  

A2

𝑠𝑠𝑠𝑠 + 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

 + 
A3s + A4 

s2 + 1 �

After solving the above, we get

 A1 =  
𝑚𝑚𝑚𝑚0

𝐶𝐶𝐶𝐶
 ,

A2 =  −
𝑚𝑚𝑚𝑚0

3

𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶2 + 𝑚𝑚𝑚𝑚0
2), 

A3 =  
𝑚𝑚𝑚𝑚0

3

𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶2 + 𝑚𝑚𝑚𝑚0
2) −

𝑚𝑚𝑚𝑚0

𝐶𝐶𝐶𝐶
= −  

𝑚𝑚𝑚𝑚0𝐶𝐶𝐶𝐶
(𝐶𝐶𝐶𝐶2 + 𝑚𝑚𝑚𝑚0

2), 

A4 = −
𝑚𝑚𝑚𝑚0

2

(𝐶𝐶𝐶𝐶2 + 𝑚𝑚𝑚𝑚0
2)

Using these values in equation (5.3),

𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡) =  −
𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙0
𝐿𝐿𝐿𝐿−1 �

 A1

𝑠𝑠𝑠𝑠
+

A2

s2 + 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚0

+  
A3s 

s2 + 1
+

A4 
s2 + 1�

𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡) =  −
𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙0
� A1(1) + A2exp �−

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚0

� + A3 cos t + A4 sint�

𝜽𝜽𝜽𝜽(𝒕𝒕𝒕𝒕) =  −
𝒈𝒈𝒈𝒈
𝒍𝒍𝒍𝒍𝟎𝟎𝟎𝟎
� 𝐀𝐀𝐀𝐀𝟏𝟏𝟏𝟏 + 𝐀𝐀𝐀𝐀𝟐𝟐𝟐𝟐𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 �−

𝑪𝑪𝑪𝑪𝒕𝒕𝒕𝒕
𝒎𝒎𝒎𝒎𝟎𝟎𝟎𝟎

� + 𝐀𝐀𝐀𝐀𝟑𝟑𝟑𝟑 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭 +  𝐀𝐀𝐀𝐀𝟒𝟒𝟒𝟒 𝐜𝐜𝐜𝐜𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐭𝐭𝐭𝐭�

- (5.4)

Using the values of   𝐀𝐀𝐀𝐀𝟏𝟏𝟏𝟏,  𝐀𝐀𝐀𝐀𝟐𝟐𝟐𝟐,  𝐀𝐀𝐀𝐀𝟑𝟑𝟑𝟑 𝐚𝐚𝐚𝐚𝐬𝐬𝐬𝐬𝐚𝐚𝐚𝐚 𝐀𝐀𝐀𝐀𝟒𝟒𝟒𝟒 in equation (5.4) and simplifying, we get
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𝜽𝜽𝜽𝜽(𝒕𝒕𝒕𝒕) =  
𝒎𝒎𝒎𝒎𝟎𝟎𝟎𝟎𝒈𝒈𝒈𝒈
𝒍𝒍𝒍𝒍𝟎𝟎𝟎𝟎

�
𝒎𝒎𝒎𝒎𝟎𝟎𝟎𝟎

𝟐𝟐𝟐𝟐(𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 �− 𝑪𝑪𝑪𝑪𝒕𝒕𝒕𝒕
𝒎𝒎𝒎𝒎𝟎𝟎𝟎𝟎

� − 𝟏𝟏𝟏𝟏) + 𝑪𝑪𝑪𝑪𝟐𝟐𝟐𝟐 (𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭 − 𝟏𝟏𝟏𝟏) + 𝒎𝒎𝒎𝒎𝟎𝟎𝟎𝟎𝑪𝑪𝑪𝑪 𝐜𝐜𝐜𝐜𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐭𝐭𝐭𝐭

𝐂𝐂𝐂𝐂 (𝑪𝑪𝑪𝑪𝟐𝟐𝟐𝟐 +  𝒎𝒎𝒎𝒎𝟎𝟎𝟎𝟎
𝟐𝟐𝟐𝟐) �

- (5.5)

Selecting 𝑚𝑚𝑚𝑚0 = 0.1 𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔, 𝑙𝑙𝑙𝑙0 = 1𝑚𝑚𝑚𝑚 in equation (5.5) and also we know the values

𝑔𝑔𝑔𝑔 = 9.8 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠−2 , C = 1.983 x 10-5 Nsm-2. Hence we are plotting the graph between ‘𝜽𝜽𝜽𝜽(𝒕𝒕𝒕𝒕)’and‘t’

(Fig 5.1).

 

6. Conclusion: 

We can conclude from the equation (5.5) that 𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡) is explicitly expressed, so it is unique. And 

also we can verify the initial condition by putting t=0 in equation (5.5), then we get 𝜃𝜃𝜃𝜃(0) = 0.

Yet another value of ‘t’ is also calculable by graphing the explicit function thus obtained in one 

cycle (-π to π) itself. The interesting problem of how to have a simple pendulum whose 

maximum swing remains constant for all time, in spite of the presence of damping, does not 

seem to have been treated before in the literature. By varying the length of the string, the mass of 

the bob or both the maximum swing of the bob can be held constant.

A. Appendix:

We have used the following formulae for solving the simple pendulum equation with the 

damping force, F is proportional to �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)

F = C�̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)

C = Proportionality constant = Viscosity of Air = 1.983 x 10-5 Nsm-2

g = 9.8ms-2

𝐿𝐿𝐿𝐿��̈�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)� = 𝑠𝑠𝑠𝑠2𝐿𝐿𝐿𝐿[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] − 𝑠𝑠𝑠𝑠 [𝜃𝜃𝜃𝜃(0)]−��̇�𝜃𝜃𝜃(0)�

𝐿𝐿𝐿𝐿��̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)� = 𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿[𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] − [𝜃𝜃𝜃𝜃(0)]

𝐿𝐿𝐿𝐿[𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] =  
1

s2 + 1

𝐿𝐿𝐿𝐿[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡)] =  
s

s2 + 1

𝐿𝐿𝐿𝐿[exp(−𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡)] =  
1

s + a

𝐿𝐿𝐿𝐿[1] =  
1
s

The various constants used in equation (5.4) are  

 A1 =  
𝑚𝑚𝑚𝑚0

𝐶𝐶𝐶𝐶
 ,

 A2 =  −
𝑚𝑚𝑚𝑚0

3

𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶2 + 𝑚𝑚𝑚𝑚0
2),

 A3 =  
𝑚𝑚𝑚𝑚0

3

𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶2 + 𝑚𝑚𝑚𝑚0
2) −

𝑚𝑚𝑚𝑚0

𝐶𝐶𝐶𝐶
, 

A4 = −
𝑚𝑚𝑚𝑚0

2

(𝐶𝐶𝐶𝐶2 + 𝑚𝑚𝑚𝑚0
2)
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