

Path Related Cup Cordial Graphs

KEYWORDS V cordial labeling, V cordial graph.	
MURUGAN	P. IYADURAI SELVARAJ
tics , V.O.Chidambaram Tamilnadu (INDIA).	Department of Computer Science, V.O.Chidambaram college, Tuticorin , Tamilnadu (INDIA).
ABSTRACT Let $G = (V,E)$ be a graph with p vertices and q edges. A Cup (V) cordial labeling of a Graph G with vertex set V is a bijection from V to {0,1} such that if each edge uv is assigned the label $f(uv) = \begin{cases} 0 & if \ f(u) = f(v) = 0 \\ 1 & otherwise \end{cases}$	
	MURUGAN tics , V.O.Chidambaram amilnadu (INDIA). a graph with p vertices and q on from V to {0,1} such that if

with the condition the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. The graph that admits a V cordial labeling is called a V cordial graph (CCG). In this paper, we proved that Path Pn, Fan Fn(n : even), and Pn K1 are V cordial graphs.

1. Introduction :

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each pair e = {uv} of vertices in E is called an edge or a line of G. In this paper , we proved that Path P_n, Fan F_n(n : even) and P_n \odot K₁ are V cordial graphs.

2. Preliminaries :

Let G = (V,E) be a graph with p vertices and q edges. A V cordial labeling of a Graph G with vertex set V is a bijection from V to {0,1} such that if each edge uv is assigned the label

 $f(uv) = \begin{cases} 0 & if \ f(u) = f(v) = 0 \\ 1 & otherwise \end{cases}$

The graph that admits a V cordial labeling is called a V cordial graph (CCG). We proved that Path P_n , Fan $F_n(n : even)$ and $P_n \odot K_1$ are V cordial graphs.

Definition 2.1 - Path

A graph with sequence of vertices u_1 , u_2 u_n such that successive vertices are joined with an edge. P_n is a path of length n-1.

Definition 2.2 - Comb

It is a graph obtained from a path P_n by joining a pendent vertex to each vertices of P_n , it is denoted by $P_n \odot K_1$

Definition 2.3 - Fan

It is a graph obtained from a path P_n by

joining each vertices of P_n to a pendent

RESEARCH PAPER

with the condition the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1.

Proof

Let $V(P_n) = \{u_i : 1 \le i \le n\}$ and

$$E(P_n) = \{ (u_i u_{i+1}) : 1 \le i \le n-1 \}$$

Define $f: V(P_n) \rightarrow \{0,1\}$

The vertex labeling are

Case 1: When n is even

$$f(u_i) = \begin{cases} 1 & 1 \le i \le \frac{n}{2} \\ 0 & \frac{n}{2} + 1 \le i \le n \end{cases}$$

The induced edge labeling are

$$f^{*}(u_{i}u_{i+1}) = \begin{cases} 1 & 1 \le i \le \frac{n}{2} \\ 0 & \frac{n}{2} + 1 \le i \le n - 1 \end{cases}$$

Here $V_0(f) = V_1(f)$ and

$$e_0(f) + 1 = e_1(f)$$

It satisfies the condition

$$|V_0(f) - V_1(f)| \le 1$$
 and

$$|e_0(f) - e_1(f)| \le 1$$

Case 2: When n is odd

$$f(u_i) = \begin{cases} 1 & 1 \le i \le \frac{n}{2} - 1 \\ 0 & \frac{n}{2} \le i \le n \end{cases}$$

The induced edge labeling are

vertex, it is denoted by

 $\mathsf{F}_{\mathsf{n}} = P_m + k_1$

3. Main results :

Theorem 3.1

Path P_n is a V cordial graph.

$$f^{*}(u_{i}u_{i+1}) = \begin{cases} 1 & 1 \le i \le \frac{n}{2} - 1 \\ 0 & \frac{n}{2} \le i \le n - 1 \end{cases}$$

Here $V_0(f)+1=V_1(f)$ and

$$e_0(f) = e_1(f)$$

It satisfies the condition

$$|V_0(f) - V_1(f)| \le 1$$
 and
 $|e_0(f) - e_1(f)| \le 1$

Hence, P_n is V cordial graph.

For example, P_8 and P_9 are V cordial graphs as shown in the figure 3.2 and figure 3.3.

Theorem 3.4

Fan F_n (n : even) is a V cordial

graph.

Proof

Let $V(F_n) = \{u, u_i : 1 \le i \le n\}$ and

$$E(F_n) = \{(uu_i): 1 \le i \le n\}$$

Define $f: V(F_n) \rightarrow \{0,1\}$

The vertex labeling are

$$f(u)=0$$

$$f(u_i) = \begin{cases} 0 & 1 \le i \le \frac{n}{2} \\ 1 & \frac{n}{2} + 1 \le i \le n \end{cases}$$

The induced edge labeling are

$$f^{*}(uu_{i}) = \begin{cases} 0 & 1 \le i \le \frac{n}{2} \\ 1 & \frac{n}{2} + 1 \le i \le n \end{cases}$$

Here

 $V_0(f) + 1 = V_1(f)$ and

$$e_0(f) = e_1(f) + 1$$

It satisfies the condition

$$|V_0(f) - V_1(f)| \le 1$$
 and

 $|e_0(f) - e_1(f)| \le 1$

Hence, F_n (n : even) is a V cordial graph

For example, F_4 , and F_6 are V cordial

graphs as shown in the figure 3.5 and

figure 3.6

Figure 3.6

Theorem 3.7

Comb $P_n \odot K_1$ is V cordial.

Proof

Let G be $[P_n \odot K_1]$

Let $V(G) = \{u_i, v_i : 1 \le i \le n\}$ and

 $E(G) = \{ [(u_i u_{i+1}): 1 \le i \le n - 1] \cup [(u_i v_i): 1 \le i \le n] \}$ Define $f: V(G) \to \{0, 1\}$

The vertex labeling are

 $f(u_i) = 0 \quad 1 \le i \le n$ $f(v_i) = 1 \quad 1 \le i \le n$

The induced edge labeling are

$$f^{*}(u_{i}u_{i+1}) = 0 \quad 1 \le i \le n - 1$$
$$f^{*}(u_{i}v_{i}) = 1 \quad 1 \le i \le n$$

$$e_0(f) + 1 = e_1(f)$$

It satisfies the condition

 $|V_0(f) - V_1(f)| \le 1$ and

$$|e_0(f) - e_1(f)| \le 1$$

Hence, the graph $P_n \odot K_1$ is V cordial.

For example, $P_4 \odot K_1$ and $P_5 \odot K_1$ are V cordial graphs as shown in the figure 3.8 and figure 3.9.

REFERENCE 1. J. A. Gallian, A Dynamic Survey of graph labeling, The Electronic journal of Coim-binotorics, 6(2001), #DS6. | 2. F. Harary, Graph Theory, Addition - Wesley publishing company Inc, USA, 1969. | 3. A.Nellai Murugan and V.Baby Suganya, Cordial labeling of path related splitted graphs, Indian Journal of Applied Research ISSN 2249 –555X, Vol.4, Issue 3, Mar. 2014, ISSN 2249 – 555X, PP 1-8. | 4. A.Nellai Murugan and M. Taj Nisha, A study on divisor cordial labeling of star attached paths and cycles, Indian Journal of Research ISSN 2250 –1991,Vol.3, Issue 3, Mar. 2014, PP 12-17. | 5. A.Nellai Murugan and V.Brinda Devi, A study on path related divisor cordial graphs, International Journal of Scientific Research, ISSN 2277–8179,Vol.3, Issue 4, April. 2014, PP 24-55. | 6. A.Nellai Murugan and A Meenakshi Sundari, On Cordial Graphs, International Journal of Scientific Research, ISSN 2277–8179,Vol.3, Issue 7, July. 2014, PP 54-55. |