Path Related Cup Cordial Graphs

KEYWORDS

V cordial labeling, V cordial graph.

Dr. A. NELLAI MURUGAN

Department of Mathematics , V.O.Chidambaram college, Tuticorin, Tamilnadu (INDIA).

P. IYADURAI SELVARAJ

Department of Computer Science, V.O.Chidambaram college, Tuticorin, Tamilnadu (INDIA).

ABSTRACT

Let $G=(V, E)$ be a graph with p vertices and q edges. A Cup (V) cordial labeling of a Graph G with vertex set V is a bijection from V to $\{0,1\}$ such that if each edge uv is assigned the label
$f(u v)=\left\{\begin{array}{ll}0 & \text { if } f(u)=f(v)=0 \\ 1 & \text { otherwise }\end{array}\right\}$
with the condition the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1.
The graph that admits a V cordial labeling is called a V cordial graph (CCG). In this paper, we proved that Path Pn, Fan Fn(n : even), and Pn K1 are V cordial graphs.

1. Introduction :

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each pair e $=\{u v\}$ of vertices in E is called an edge or a line of G. In this paper, we proved that Path $P_{n}, F a n F_{n}(n$: even $)$ and $P_{n} \odot$ K_{1} are V cordial graphs.

2. Preliminaries :

Let $G=(V, E)$ be a graph with p vertices and q edges. A V cordial labeling of a Graph G with vertex set V is a bijection from V to $\{0,1\}$ such that if each edge $u v$ is $\begin{aligned} & \text { assigned the label } \\ & f(u v)=\left\{\begin{array}{ll}0 & \text { if } f(u)=f(v)=0 \\ 1 & \text { otherwise }\end{array}\right\}\end{aligned}$.

The graph that admits a V cordial labeling is called a V cordial graph (CCG). We proved that Path P_{n}, Fan $F_{n}(n:$ even $)$ and $\quad P_{n} \odot K_{1}$ are V cordial graphs.

Definition 2.1 - Path

A graph with sequence of vertices $\mathrm{u}_{1}, \mathrm{u}_{2} \ldots . \mathrm{u}_{\mathrm{n}}$ such that successive vertices are joined with an edge. P_{n} is a path of length $\mathrm{n}-1$.

Definition 2.2 - Comb

It is a graph obtained from a path P_{n} by joining a pendent vertex to each vertices of P_{n}, it is denoted by $P_{n} \odot K_{1}$

Definition 2.3 - Fan
It is a graph obtained from a path P_{n} by joining each vertices of P_{n} to a pendent
with the condition the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1.

Proof

Let $V\left(P_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and

$$
E\left(P_{n}\right)=\left\{\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\}
$$

Define $f: V\left(P_{n}\right) \rightarrow\{0,1\}$
The vertex labeling are
Case 1: When n is even
$f\left(u_{i}\right)=\left\{\begin{array}{ll}1 & 1 \leq i \leq \frac{n}{2} \\ 0 & \frac{n}{2}+1 \leq i \leq n\end{array}\right\}$
The induced edge labeling are

$$
f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}
1 & 1 \leq i \leq \frac{n}{2} \\
0 & \frac{n}{2}+1 \leq i \leq n-1
\end{array}\right\}
$$

Here $\quad V_{0}(f)=V_{1}(f)$ and

$$
e_{0}(f)+1=e_{1}(f)
$$

It satisfies the condition

$$
\begin{aligned}
& \left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and } \\
& \left|e_{0}(f)-e_{1}(f)\right| \leq 1
\end{aligned}
$$

Case 2: When n is odd

$$
f\left(u_{i}\right)=\left\{\begin{array}{ll}
1 & 1 \leq i \leq \frac{n}{2}-1 \\
0 & \frac{n}{2} \leq i \leq n
\end{array}\right\}
$$

The induced edge labeling are
vertex, it is denoted by
$\mathrm{F}_{\mathrm{n}}=P_{m}+k_{1}$

3. Main results :

Theorem 3.1

Path P_{n} is a V cordial graph.

$$
f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}
1 & 1 \leq i \leq \frac{n}{2}-1 \\
0 & \frac{n}{2} \leq i \leq n-1
\end{array}\right\}
$$

Here $\quad V_{0}(f)+1=V_{1}(f)$ and

$$
e_{0}(f)=e_{1}(f)
$$

It satisfies the condition

$$
\begin{aligned}
& \left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and } \\
& \left|e_{0}(f)-e_{1}(f)\right| \leq 1
\end{aligned}
$$

Hence, P_{n} is V cordial graph.
For example, P_{8} and P_{9} are V cordial graphs as shown in the figure 3.2 and figure 3.3.

Figure 3.2

Figure 3.3

Theorem 3.4

Fan $\mathrm{F}_{\mathrm{n}}(\mathrm{n}$: even) is a V cordial graph.

Proof
Let $V\left(F_{n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and

$$
E\left(F_{n}\right)=\left\{\left(u u_{i}\right): 1 \leq i \leq n\right\}
$$

Define $f: V\left(F_{n}\right) \rightarrow\{0,1\}$

The vertex labeling are

$$
f(u)=0
$$

$f\left(u_{i}\right)=\left\{\begin{array}{ll}0 & 1 \leq i \leq \frac{n}{2} \\ 1 & \frac{n}{2}+1 \leq i \leq n\end{array}\right\}$
The induced edge labeling are

$$
f^{*}\left(u u_{i}\right)=\left\{\begin{array}{ll}
0 & 1 \leq i \leq \frac{n}{2} \\
1 & \frac{n}{2}+1 \leq i \leq n
\end{array}\right\}
$$

Here $\quad V_{0}(f)+1=V_{1}(f)$ and

$$
e_{0}(f)=e_{1}(f)+1
$$

It satisfies the condition

$$
\begin{aligned}
& \left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and } \\
& \left|e_{0}(f)-e_{1}(f)\right| \leq 1
\end{aligned}
$$

Hence, $F_{n}(n$: even) is a V cordial graph
For example, F_{4}, and F_{6} are V cordial
graphs as shown in the figure 3.5 and figure 3.6

Figure 3.5

Figure 3.6

Theorem 3.7

Comb $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is V cordial.

Proof

Let G be $\left[P_{n} \odot K_{1}\right]$
Let $V(G)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and
$E(G)=\left\{\left[\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(u_{i} v_{i}\right): 1 \leq i \leq n\right]\right\}$
Define $f: V(G) \rightarrow\{0,1\}$
The vertex labeling are

$$
\begin{aligned}
& f\left(u_{i}\right)=0 \quad 1 \leq i \leq n \\
& f\left(v_{i}\right)=1 \quad 1 \leq i \leq n
\end{aligned}
$$

The induced edge labeling are

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=0 \quad 1 \leq i \leq n-1 \\
& f^{*}\left(u_{i} v_{i}\right)=1 \quad 1 \leq i \leq n
\end{aligned}
$$

Here $\quad V_{0}(f)=V_{1}(f)$ and

$$
e_{0}(f)+1=e_{1}(f)
$$

It satisfies the condition

$$
\begin{aligned}
& \left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and } \\
& \left|e_{0}(f)-e_{1}(f)\right| \leq 1
\end{aligned}
$$

Hence, the graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is V cordial.
For example, $\mathrm{P}_{4} \odot \mathrm{~K}_{1}$ and $\mathrm{P}_{5} \odot \mathrm{~K}_{1}$ are V
cordial graphs as shown in the figure 3.8
and figure 3.9.

Figure 3.8

Figure 3.9

