A NOTE ON EXTENTED AND PUNCTURED CODES

KEYWORDS

Extented codes,Punctured Codes,Encoding,Decoding,generator Matrix

Dr.M.Mary Jansi Rani

Head and Assistant Professor, Department of Mathematics, Thanthai Hans Roever College, Perambalur.

Mrs.S.Tamil Mani

Assistant Professor, Department of Mathematics,Thanthai Hans Roever college, Perambalur

Mrs.A.Sathiya

Assistant Professor, Department of Mathematics, Thanthai Hans Roever college,Perambalur

ABSTRACT The transmission of a message through a 'noisy' channel is done by choosing efficient encoding and decoding function. This note studies the role of linear transformations $L: \mathrm{F}_{q}{ }^{k} \rightarrow \mathrm{~F}_{q}{ }^{n}$ where $k<n$ and $\mathrm{F}_{q}{ }^{k} \& \mathrm{~F}_{q}{ }^{k}$ are vector spaces of dimension k and n respectively over a finite field $\mathrm{F}_{q}\left(q=p^{m}, p\right.$ is a prime, $\left.m \geq 1\right)$ the mathematical background of extended and punctured linear codes is highlighted in the following theorems:
Let $L: \mathrm{F}_{q}{ }^{k} \rightarrow \mathrm{~F}_{2}{ }^{n}(k<n)$ be an encoding function giving a linear code $\operatorname{Im} L=C$. If $E: \mathrm{F}_{2}{ }^{n} \rightarrow \mathrm{~F}_{2}{ }^{n+1}$ is the $[n+1, n]$ parity check code, the composite $E \circ L$ gives a linear code. Further, if the minimum distance for cis $2 l+1$, then $E \circ L$ gives a linear code with minimum distance $2 l+2$.
If $L: \mathrm{F}_{2}{ }^{k} \rightarrow \mathrm{~F}_{2}{ }^{h}, E^{1}: \mathrm{F}_{2}{ }^{n} \rightarrow \mathrm{~F}_{2}{ }^{r}$ give linear codes and if the generator matrices associated with them are $G \& G^{\prime}$ repetitively, then the generator matrix associated with $E^{\prime} \circ L$ is $G G^{\prime}$.
The extended Hamming codes and Reed-Muller codes are shown as illustrations.
INTRODUCTION Let F_{q} denotes a field of q elements where $q=p^{m}(p$ a prime $m \geq 1), \mathrm{F}_{q}{ }^{n}$ stands for vector space of n - tuples $a_{0}, a_{1}, \ldots \ldots \ldots . a_{n-1}$, where $a_{i} \in \mathrm{~F}_{q}(i=0,1,2 \ldots \ldots \ldots \ldots . n-1)$ over F_{q}. Let $v(k, q)$ be a vector space of dimension k over F_{q}. A function $\mathrm{E}: \mathrm{V}(\mathrm{k}, \mathrm{q}) \rightarrow \mathrm{F}_{q}{ }^{n}$ is called an encoding function. We take $k<n$ Image of $V(k, q)$ under E written $\mathrm{I} \mathrm{m} \mathrm{E}=\mathrm{C}$ is a sub space $\mathrm{F}_{q}{ }^{n} . \mathrm{C}=\mathrm{I} \mathrm{m} \mathrm{E}$ is called a linear code. An $[\mathrm{n}, \mathrm{k}]$ - linear code consists of the encoding function $\mathrm{E}: \mathrm{V}(\mathrm{k}, \mathrm{q}) \rightarrow \mathrm{F}_{q}{ }^{n}$ and a decoding function $D: \mathrm{F}_{q}{ }^{n} \rightarrow V(n, q), k<n$ indicates that the function E will be adding "Check digits" to the original message. Given a long message, we treat it into blocks of length n. We assume that E is $1-1$ so that no two message blocks have the same code word. A channel T transmits each digit with probability of error p and D decodes received blocks into blocks of length k . We seek to choose
$E \& D$ in such a way that the probability that a decoded block will equal the original message block will be high. There are two additional requirements.

First, we seek an efficient code that does not transmit Γ_{00} many extra digits.(which are elements of F_{q} possibly repeated). $R=k / n$ is called the rate of the code. If R is close to 1 the code will be efficient.

Secondly,the code is useless the functions E\&D can be implemented in practice say by digital electronic is unity.

Next usually p is small so that a code word will be transmitted without error and most received words Containing an error will contain only one error. They are called single error - correcting codes which decode all received words containing at most one error multiple error - correcting codes are to be considered when p is not small is called a binary linear code when $q=2 . \mathrm{F}_{2}=\{0,1\}$. If we define $E: \mathrm{F}_{2}{ }^{n} \rightarrow \mathrm{~F}_{2}{ }^{n+1}$ by $E\left(a_{0}, a_{1} \ldots \ldots \ldots . a_{n-1}\right)=a_{0} a_{1} \ldots . a_{n-1} a_{n} \longrightarrow(0.1)$
where $a_{n}=a_{0}+a_{1}+\ldots \ldots . . a_{n-1}\left(a_{i}=0\right.$ or $\left., i=0,1, \ldots \ldots . n\right)$ \qquad
We notice that $a_{n}=0$ or 1 according as the number of 1's in $a_{0}, a_{1} \ldots \ldots . a_{n-1}$ is error or odd.
Definition 0.1 The weight of a code word $\vec{c}=c_{0} c_{1} \ldots \ldots . c_{n-1}$ is the number of non zero digits occurring among $c_{0}, c_{1} \ldots \ldots c_{n-1}$. It is denoted by $\omega t(\vec{c})$.

Definition 0.2 Let C be an $[n, k]$ binary linear code. For $\vec{a}=a_{0} a_{1} \ldots . . . a_{n-1}, \vec{b}=b_{0} b_{1} \ldots \ldots . . b_{n-1}$ (elements of C) the distance $d(\vec{a}, \vec{b})$ is $w t(\vec{a}+\vec{b})$, the number of locations i with $a_{i} \neq b_{i}(i=0,1,2, \ldots \ldots . n-1)$

For $\vec{a} \in c$, if \vec{r} is the received word $\vec{r}=r_{0} r_{1} \ldots \ldots . . r_{n-1}$ the error-pattern $\vec{e}=e_{0}, e_{1}, \ldots \ldots e_{n-1}$ is such that

$$
\begin{align*}
& e_{i}= \begin{cases}0 & \text { if } a_{i}=r_{i} \\
1 & \text { if } a_{i}=r_{i}\end{cases} \\
& \text { We note that } \vec{a}=\vec{r}+\vec{e} \tag{0.4}
\end{align*} \quad(i=0, \ldots . \ldots n-1) \longrightarrow(0.3)
$$

Next, we state two theorems without proof, They have been drawn from Dornhoff and Hohn [2].
Theorem I A code C can detect all error pattern of weight ≤ 1, if and only if, the minimum distance between code words is at coast $\mathrm{t}+1$.

Theorem II If the minimum distance between code words is at least $2 t+1$, we can choose a decoding function D that will correct all error -patterns of weight $\leq t$.

Definition 0.3 Let $k<n$, A $k \times n$ matrix with entries from $F_{2}=\{0,1\} \quad$ is called a generator matrix G if its first k columns form I_{k} (the $k \times k$ unit matrix) given such a matrix G we can define an encoding function $E: F_{2}^{k} \rightarrow F_{2}{ }^{n}$ by $E(\vec{X})=\vec{X} G$

Where \vec{X} a vector is expressed as a row vector $\mathrm{F}_{2}{ }^{k} \operatorname{Im}(0.5) \vec{X} G$ means $\left[X_{0} X_{1} \ldots \ldots . . X_{k}\right]\left[I_{k} / A\right]$ where A is a $k \times n-k$ matrix. So that G is a $k \times n$ matrix. Clearly $\vec{X} G$ is a $1 \times n$ matrix representing a row vector $\in \mathrm{F}_{q}{ }^{n}$.

Definition0.4 Let $k<n$, $\operatorname{An}(n-k) \times n$ matrix H whose last $(n-k)$ columns are $I_{n-k}[$ the $(n-k) \times(n-k)$ unit matrix $]$ is called a Parity check matrix .

The parity check matrix provided an encoding function $E: \mathrm{F}_{2}{ }^{k} \rightarrow \mathrm{~F}_{2}{ }^{w}$. For any message word $\vec{w} \in \mathrm{~F}_{2}{ }^{k}$. The codeword in the unique word $E(\vec{w}) \in \mathrm{F}_{2}^{W}$ whose $1^{\text {st }} \mathrm{k}$ digits are the digits of \vec{w} and whose remaining digits are determined by the equation.

Proof: Suppose that some column (say $i^{\text {th }}$) of H is $\overrightarrow{0}$. Then if $\vec{e}=000 \ldots 10 \ldots 0$ ($i^{\text {th }}$ digits) and \vec{C} is any code word. Then $H(\vec{C}+\vec{e})^{T}=\overrightarrow{0}$ so $\vec{C}+\vec{e}$ appears to be a code word and any error in the $i^{\text {th }}$ digits will not be detected at all. Let \vec{C} be a code word, then $H \vec{C}^{T}=\overrightarrow{0}$

Since the received word $\vec{r}=\vec{c}+\vec{e}$

$$
\begin{aligned}
H \vec{r}^{T} & =H(\vec{c}+\vec{e})^{T}=H \vec{c}^{T}+H \vec{e}^{T} \\
& =\overrightarrow{0}+H \vec{e}^{T} \\
& =H \vec{e} \\
& =\text { the } i^{\text {th }} \text { column of } \mathrm{H} .
\end{aligned}
$$

So, any error pattern of weight 1 will be decoded correctly. We write $\vec{H}=\vec{A}$ and call \vec{A}, the syndrome.
If $\vec{A}=\overrightarrow{0}$ transmission was probably correct.
If \vec{A} is the $i^{\text {th }}$ column of H , these was probably a single error in the $i^{\text {th }}$ digits
If \vec{A} is neither $\overrightarrow{0}$ nor the $i^{\text {th }}$ column at least two errors must have occurred with transmission.
Also, if $i^{\text {th }}$ column $=j^{\text {th }}$ column $=\vec{A}$ we cannot tell if the error is in the $i^{\text {th }}$ or $j^{\text {th }}$ digit. So H will decode all single errors correctly if the columns of H are non zero and distinct. conversely, if the columns of H are non zero and distinct, then H will decode all single errors correctly , by the property of the syndrome \vec{A}.

Next, we denote the minimum distance between code words of a lode c by d . we specify C as an [$\mathrm{n}, \mathrm{k}, \mathrm{d}]$ Code. We emphasize the role of the parity check matrix in the following manner:

An encoding function $E: \mathrm{F}_{2}{ }^{k} \rightarrow \mathrm{~F}_{2}{ }^{n}$ defined by a parity check matrix H can correct all single errors if and only if the columns of H are non-zero and distinct.

The $(n-k) \times n$ matrix H produces $(n-k)$ parity check equations via $H(E(\vec{w}))^{T}=\overrightarrow{0}$. These equations determined an $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code. The number of information digits is k . For a fixed number $(n-k)$ of parity check equations we want to send as much information as possible. So we make the number of columns n of H as large as possible. So we take $n=2^{k}-1$ the number of non- zero $(n-k)$ digits columns which are the binary representation of the numbers $1,2,3, \ldots \ldots .2^{n-k}-1$. Then we obtain an $\left[2^{n-k}-1, k\right]$ code . As no two columns of H are multiples of are another, the code, so obtained will have minimum weight at least 3 . It can be shown that the minimum weight of such a code is 3 .

Proof: Suppose that some column (say $i^{\text {th }}$) of H is $\overrightarrow{0}$. Then if $\vec{e}=000 \ldots 10 \ldots 0$ ($i^{\text {th }}$ digits) and \vec{C} is any code word. Then $H(\vec{C}+\vec{e})^{T}=\overrightarrow{0}$ so $\vec{C}+\vec{e}$ appears to be a code word and any error in the $i^{\text {th }}$ digits will not be detected at all. Let \vec{C} be a code word, then $H \vec{C}^{T}=\overrightarrow{0}$

Since the received word $\vec{r}=\vec{c}+\vec{e}$

$$
\begin{aligned}
\overrightarrow{\vec{r}^{T}} & =H(\vec{c}+\vec{e})^{T}=H \vec{c}^{T}+H \vec{e}^{T} \\
& =\overrightarrow{0}+H \vec{e}^{T} \\
& =H \vec{e}^{T} \\
& =\text { the } i^{\text {th }} \text { column of } \mathrm{H} .
\end{aligned}
$$

So, any error pattern of weight 1 will be decoded correctly. We write $\vec{H}=\vec{A}$ and call \vec{A}, the syndrome.
If $\vec{A}=\overrightarrow{0}$ transmission was probably correct.
If \vec{A} is the $i^{\text {th }}$ column of H , these was probably a single error in the $i^{\text {th }}$ digits
If \vec{A} is neither $\overrightarrow{0}$ nor the $i^{\text {th }}$ column at least two errors must have occurred with transmission.
Also, if $i^{\text {th }}$ column $=j^{\text {th }}$ column $=\vec{A}$ we cannot tell if the error is in the $i^{\text {th }}$ or $j^{\text {th }}$ digit. So H will decode all single errors correctly if the columns of H are non zero and distinct. conversely, if the columns of H are non zero and distinct, then H will decode all single errors correctly, by the property of the syndrome \vec{A}.

Next, we denote the minimum distance between code words of a lode c by d . we specify C as an [$\mathrm{n}, \mathrm{k}, \mathrm{d}]$ Code. We emphasize the role of the parity check matrix in the following manner:

An encoding function $E: \mathrm{F}_{2}{ }^{k} \rightarrow \mathrm{~F}_{2}{ }^{n}$ defined by a parity check matrix H can correct all single errors if and only if the columns of H are non-zero and distinct.

The $(n-k) \times n$ matrix H produces $(n-k)$ parity check equations via $H(E(\vec{w}))^{T}=\overrightarrow{0}$. These equations determined an $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code. The number of information digits is k . For a fixed number $(n-k)$ of parity check equations we want to send as much information as possible. So we make the number of columns n of H as large as possible. So we take $n=2^{k}-1$ the number of non- zero $(n-k)$ digits columns which are the binary representation of the numbers $1,2,3, \ldots \ldots .2^{n-k}-1$. Then we obtain an $\left[2^{n-k}-1, k\right]$ code . As no two columns of H are multiples of are another, the code, so obtained will have minimum weight at least 3 . It can be shown that the minimum weight of such a code is 3 .

If $n=2^{r}-1, r=n-k(o) k=n-r=2^{r}-1-r$.So, we get $a\left[2^{r}-1,2^{r}-1-r, 3\right]$ code called the Hamming codes.

1. EXTENDED CODES

Before we go to extended codes, we need the basic ideas about elementary row transformations of $(m \times n)$ matrices with entries from the set \mathbb{R} of real numbers.

The matrix units are the $(n \times n)$ square matrices $T_{i j}$ defined by

$$
\text { where } t_{i j}=\left\{\begin{array}{ll}
1 & \text { in the }(i, j)^{\text {th }} \text { place } \\
0 & \text { elsewhere }
\end{array} \quad \longrightarrow\right. \text { (1.2) }
$$

for a given matrix $A=[a i j]$, for replacing the $j^{\text {th }}$ column C_{j} by $C_{j}+C_{k}$ we have only to multiply A by $\left[I+T_{i j}\right]$ on the right, For instance to obtain from

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

The matrix $\quad A_{1}=\left(\begin{array}{lll}a_{11} & a_{11}+a_{12} & a_{13} \\ a_{21} & a_{21}+a_{22} & a_{23} \\ a_{31} & a_{31}+a_{32} & a_{33}\end{array}\right)$
We multiply A by $\left(I+T_{12}\right)$ the right as

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{11}+a_{12} & a_{13} \\
a_{21} & a_{21}+a_{22} & a_{23} \\
a_{31} & a_{31}+a_{32} & a_{33}
\end{array}\right)
$$

Further, $A\left[I+T_{13}+T_{23}\right]$ gives $\left(\begin{array}{lll}a_{11} & a_{12} & a_{11}+a_{12}+a_{13} \\ a_{21} & a_{22} & a_{21}+a_{22}+a_{23} \\ a_{31} & a_{32} & a_{31}+a_{32}+a_{33}\end{array}\right)$
Next, we consider binary linear codes defined by $L: \mathrm{F}_{2}{ }^{k} \rightarrow \mathrm{~F}_{2}{ }^{n}$ where $k<n$. The $[n+1, n]$ parity check code $E: \mathrm{F}_{2}{ }^{n} \rightarrow \mathrm{~F}_{2}{ }^{n+1}$ considered in $(0,1)$ can be obtained via its generator matrix, say \mathbf{G}_{1} for $\vec{X} \in F_{2}{ }^{n}, E(\vec{X})=\vec{X} G_{1}$.

(1.2) $A\left(I^{\prime}+T_{1 n+1}+T_{2 n+1} \cdots \ldots \ldots . T_{n n+1}\right)=G_{1}$ where $I^{1}=$ The $n \times(n+1)$ matrix in which $\left[I_{n} / 0\right]^{(n+1)^{1 h}}$ column has Zero) $T_{i, n+1}$ is the $n \times n+1$ matrix in which the elements of $(i, n+1)^{\text {th }}$ place is 1 and zero at other entries. For $\mathrm{n}=3$, we see that,

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{11}+a_{12}+a_{13} \\
a_{21} & a_{22} & a_{23} & a_{21}+a_{22}+a_{23} \\
a_{31} & a_{32} & a_{33} & a_{31}+a_{32}+a_{33}
\end{array}\right)
$$

So G_{1} is determinable.
Theorem 1 Let $L: \mathrm{F}_{2}{ }^{k} \rightarrow \mathrm{~F}_{2}{ }^{n}(k<n)$ be an encoding function giving a linear code $\operatorname{Im} L=C$. If $E: \mathrm{F}_{2}{ }^{n} \rightarrow \mathrm{~F}_{2}{ }^{n+1}$ is the ($\mathrm{n}+1, \mathrm{n}$) parity check code, the composite $E \circ L$ is a linear code. Further, if the minimum distance for C in $2 l+1$, then $E \circ L$ gives a linear code with minimum distance $2 l+2$.

Proof: Let G_{1} be the generator matrix for $G_{1} . G_{1}$ is an $\mathrm{n} \times \mathrm{n}+1$ matrix as shown in (1.2). We know that for $\vec{X} \in \mathrm{~F}_{2}{ }^{k}, L(\vec{X})=\vec{X} G$ where G is the generator matrix for L . For $\vec{y} \in \mathrm{~F}_{2}{ }^{n}, \mathrm{~F}(\vec{y})=\vec{y} G_{1}$.

$$
\begin{aligned}
& \text { As } \vec{y}=L(\vec{X}), \vec{X} \in \mathrm{~F}_{2}{ }^{k} \\
& E(\vec{y})=E(\vec{X} G)=(\vec{X} G) G_{1}=(\vec{X}) G G_{1}
\end{aligned}
$$

$E \circ L$ is a linear code having the generator matrix $G G_{1}$

Next, Let $2 l+1$ be the minimum distance for L . For $\vec{A}=\left(A_{0} A_{1} \ldots A_{k-1}\right) \in \mathrm{F}_{2}{ }^{k}$
$E \circ L(\vec{A})=E \circ L\left(A_{0} A_{1} \ldots \ldots . . A_{k-1}\right)=A_{0} A_{1} \ldots . . A_{k-1} A_{n}$ where $A_{n}=A_{0}+A_{1}+\ldots \ldots A_{n-1}$ by vertex of the property of $G_{1} . A_{n}=0$ or 1 , So if minimum distance of C is $2 l+1, E \circ L$ gives a code whose minimum distance is $2 l+2$.

Corollary For the Hamming code $H_{2, r}\left[2^{r}-1,2^{r}-1-r, 3\right]$ the extended Hamming code is $\left[2^{r}, 2^{r}-1-r, 4\right]$ which is the Reed- Muller code of length 2^{r}.

2. PUNCTURING OF CODES

We consider binary linear codes defined by $L: \mathrm{F}_{2}{ }^{k} \rightarrow \mathrm{~F}_{2}{ }^{n}$ and $E_{1}: \mathrm{F}_{2}{ }^{n} \rightarrow \mathrm{~F}_{2}{ }^{r}$ where $r<n$, As in section 1, the composite $E_{1} \circ L$ in also a linear code. If $C^{1}=\operatorname{Im} L$ has the generator matrix $G(a \quad k \times n$ matrix $)$ and $C^{1}=\operatorname{Im} E_{1}$ has the generator matrix $G^{1}(n \times r$ matrix $)$, the generator matrix for $E_{1} \circ L$ is G^{1} which is a $k \times r$ matrix.

The effect of $E_{1} \circ L$ is to transform a code word \vec{c} of length n to a code word, \vec{c} of length r , The number of columns of $\mathrm{G} G^{1}$ will be less than the number of columns of G . When $r=n-1$, it amounts to puncturing the code \vec{C} represented by G, by deleting the same coordinate i from each code word. The resulting code c^{1} is still linear and has length $(n-1)$ (we denote the punctured code by C^{*})

Theorem 2 If $L: \mathrm{F}_{2}{ }^{k} \rightarrow \mathrm{~F}_{2}{ }^{n}, E^{1}: \mathrm{F}_{2}{ }^{n} \rightarrow \mathrm{~F}_{2}{ }^{r}$ give linear codes and if the generator matrices associated with them as $\mathrm{G} \& G^{\prime}$ repetitively, the generator matrix associated with $E^{\prime} \circ L$ is given by G^{\prime}.

Proof is similar to that of theorem 1.
Corollary The Reed -Muller code $\mathrm{R}(\mathrm{r}, \mathrm{m})$ is a $\left[2^{m}, k, 2^{m-r}\right]$ code where k is its dimension $1+\binom{m}{1}+\binom{m}{2} \cdots \cdots \cdots . . .\binom{m}{r}$ and $\mathrm{r}<\mathrm{m}$. The puncturing of $\mathrm{R} \quad(\mathrm{r}, \mathrm{m})$ yields a binary code $\left[2^{m}-1, k, 2^{m-r}-1\right]$, when $m=3$, puncturing of $[8,4,4]$ code gives the binary Hamming code $[7,4,3]$.

Remark $\mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ denotes a binary linear code. To puncture C is to delete the same coordinate i from each code word. The punctured code is denoted by $C *\left[n+1, k, d^{*}\right]$. If G denotes the generator matrix of C the
generator G^{*} of C^{*} is obtained from $\mathrm{G}^{\prime} . G^{\prime}$ is the $n \times(n-1)$ matrix which is got from the $(n \times n)$ unit matrix by deleting the $i^{\text {th }}$ column. In the case where C is a $[24,12,8]$ (Golay) code, by puncturing in any of the coordinates, we obtain $\mathrm{C}^{*}=[23,12,7]$ binary code .

