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INTRODUCTION        Let qF denotes a field of q elements where (mq p p= a prime 1)m ≥ , n
qF stands    

for  vector  space  of  n - tuples   0 1 1, ,........... na a a − , where  ( )0,1,2.............. 1i qa i n∈ = −F over qF . Let 

( ),v k q be a vector space of dimension k over qF . A function E : V(k,q) →  n
qF is called an encoding 

function. We take k n< Image of ( ) ,   V k q under E written I m E = C is a sub space n
qF . C = I m E is 

called a linear code. An [n, k] - linear code consists of the encoding function E:V(k,q) → n
qF and a decoding

function ( ): , ,n
qD V n q k n→ <F indicates that the function E will be adding “Check digits” to the original 

message.  Given a long message, we treat it into blocks of length n. We assume that E is 1-1 so that no two 

message blocks have the same code word. A channel T transmits each digit with probability of error p and D

decodes received blocks into blocks of length k.  We seek to choose

&E D in such a way that the probability that a decoded block will equal the original message block will be 

high. There are two additional requirements.

First, we seek an efficient code that does not transmit 00Γ many extra digits.(which are elements of 

qF possibly repeated). kR n= is called the rate of the code. If R is close to 1 the code will be efficient.

Secondly,the code is useless the functions E&D can be implemented in practice say by digital 

electronic is unity.

Next usually p is small so that a code word will be transmitted without error and most received words

Containing an error will contain only one error.  They are called single error – correcting codes which decode 

all received words containing at most one error multiple error – correcting codes are to be considered when p

is not small is called a binary linear code when q = 2. { }2 0,1 .=F If we define 1
2 2: n nE +→F F by 

( )0 1 1 0 1 1, .......... .....n n nE a a a a a a a− −= (0.1)



INDIAN JOURNAL OF APPLIED RESEARCH  X 347 

Volume : 4 | Issue : 12  | Dec 2014 | ISSN - 2249-555XResearch Paper

where ( )0 1 1........ 0 , 0,1,......n n ia a a a a or i n−= + + = = (0.2)

We notice that 0 1na or= according as the number of 1’s in 0 1 1, ....... na a a − is error or odd.

Definition 0.1 The weight of a code word 0 1 1....... nc c c c −=


is the number of non zero digits occurring among  

0 1 1, ............ nc c c − .  It is denoted by ( )t cω


.

Definition 0.2 Let C be an [ ],n k binary linear code. For 0 1 1 0 1 1...... , .......n na a a a b b b b− −= =
 (elements of C)

the distance ( ),d a b
 

is ( )wt a b+
 

, the number of locations i with i ia b≠ ( )0,1,2,....... 1i n= −

For ,a c∈ if r is the received word 0 1 1........ nr r r r −=


the error-pattern 0 1 1, ,........... ne e e e −=


is such that 

( )
0

0,........... 1
1

i i
i

i i

if a r
e i n

if a r
=

= = − =
( )0.3

We note that a r e= +
  

(0.4)

Next, we state two theorems without proof, They have been drawn from  Dornhoff and Hohn [2]. 

Theorem I A code C can detect all error pattern of weight 1,≤ if and only if, the minimum distance

between code words is at coast t+1.

Theorem II If the minimum distance between code words is at least 2 1t + , we can choose a decoding 

function D that will correct all error -patterns of weight t≤ .

Definition 0.3 Let ,k n< A k n× matrix with entries from { }2 0,1=F     is called a generator matrix G if its 

first k columns form kI (the k k× unit matrix) given such a matrix G we can define an encoding function 

2 2: k nE F F→ by ( )E X XG=
 

(0.5)

Where X


a vector is expressed as a row vector 2
kF Im (0.5) XG


means [ ]0 1[ ........ ]k kX X X I A where A is a 

k n k× − matrix. So that G is a k n× matrix.  Clearly XG


is a 1 n× matrix representing a row vector n
q∈F .

Definition0.4 Let ,k n< An ( )n k n− × matrix H whose last ( )n k− columns

are ( ) ( )n kI the n k n k unit matrix−  − × −   is called a Parity  check matrix .

The parity check matrix provided an encoding function 2 2: k wE →F F . For any message word 2
kw∈


F

. The codeword in the unique word ( )E w


2
W∈F whose 1st k digits are the digits of w


and whose remaining 

digits  are determined by the equation.
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Proof: Suppose that some column (say thi ) of H is 0


. Then  if 000...10...0e =


( )thi digits and C


is 

any code word . Then ( ) 0
T

H C e+ =
  

so C e+
 

appears to be a code word and any error in  the thi digits will 

not be detected at all . Let C


be a code word, then 0
T

HC =
 

Since the received word r c e= +
  

T
H r


= ( )T T T
H c e H c H e+ = +

   

= 0
T

H e+
 

=
T

H e


=   the thi column of H.

So, any error pattern of weight 1 will be decoded correctly . We write H r A=
 

and call A


, the syndrome.

If 0A =
 

transmission was probably correct.

If  A


is the thi column of H, these was probably a single  error in the  thi digits 

If A


is neither 0


nor the thi column at least two errors must have occurred with transmission. 

Also, if thi column   = thj column= A


we cannot tell if the error is in the thi or    thj digit.   So H will decode 

all single errors correctly if the columns of H are non zero  and distinct.

conversely, if the columns of H  are non zero and distinct , then H will decode all single errors correctly , by 

the property of the syndrome   A


.

Next, we denote the minimum distance between code words of a lode c by d. we  specify C as an

[ n, k, d] Code. We emphasize the role of the parity check matrix in the following manner:

An encoding function 2 2: k nE →F F defined by a parity check matrix H can correct all single errors if 

and only if the columns of H are non-zero and distinct. 

The ( )n k n− × matrix H produces ( )n k− parity check equations via ( )( ) 0
T

H E w =
 

. These 

equations determined an [n, k, d] code. The number of information digits is k. For a fixed number ( )n k− of 

parity check equations we want to send as much information as possible. So we make the number of columns n

of H as large as possible. So we take 2 1kn = − the number of non– zero ( )n k− digits columns which are the 

binary representation of the numbers 1,2, 3,……. 2 1n k− − . Then we obtain an 2 1,n k k− −  code . As no two 

columns of H are multiples of are another, the code, so obtained will have minimum weight at least 3. It can 

be shown that the minimum weight of such a code is 3. 
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If ( )2 1, 2 1r rn r n k o rk n r r= − = − = − = − − .So, we get 2 1,2 1 ,3r ra r − − −  code 

called the Hamming codes.

1. EXTENDED CODES

Before we go to extended codes, we need the basic ideas about elementary row transformations of 

( )m n× matrices with entries from the set of real numbers.

The matrix units are the ( )n n× square matrices  ijT defined by

ijT = ......... 1 .........

j

i

 
 
 
 
 
 
  

(1.1)

= [ ijt ]

where ijt = ( )1 ,
0

thin the i j place
elsewhere





(1.2)

for a given matrix [ ]A aij= , for replacing the thj column jC by j kC C+ we have only to multiply A by

ijI T +  on the right, For instance to obtain from

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 = 
 
 

The matrix  
11 11 12 13

1 21 21 22 23

31 31 32 33

a a a a
A a a a a

a a a a

+ 
 = + 
 + 

We multiply A by ( )12I T+ the right as 

11 12 13 11 11 12 13

21 22 23 21 21 22 23

31 32 33 31 31 32 33

1 1 0
0 1 0
0 0 1

a a a a a a a
a a a a a a a
a a a a a a a

+     
     = +     
     +     

…
.

…
.
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Further, [ ]13 23A I T T+ + gives  
11 12 11 12 13

21 22 21 22 23

31 32 31 32 33

a a a a a
a a a a a
a a a a a

+ + 
 + + 
 + + 

Next, we consider binary linear codes defined by 2 2: k nL →F F where k n< . The [ 1, ]n n+ parity 

check code 1
2 2: n nE +→F F considered in (0, 1) can be obtained via its generator matrix , say 1G for 

( )2 1,nX F E X XG∈ =
  

.

If 

11 12 1

21 22 2

1 2

................
.................

................................

.................................
.................

n

n

n n nn

a a a
a a a

A

a a a

 
 
 
 =
 
 
 
 

is the matrix obtained from n basis vectors of the vector space 2
nF

(1.2) ( )'
1 1 2 1 1 1..........n n nnA I T T T G+ + ++ + = where ( )1 1I The n n= × + matrix in which [ ]( )10

thn
nI + column 

has Zero) , 1i nT + is the 1n n× + matrix in which the elements of ( ), 1 thi n + place is 1 and zero at other 

entries. For n=3, we see that,

11 12 13 11 12 13 11 12 13

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

1 0 0 1
0 1 0 1
0 0 1 1

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a

+ +     
     = + +     
     + +     

So 1G is determinable.

Theorem 1 Let ( )2 2: k nL k n→ <F F be an encoding function giving a linear code Im L C= .  If

1
2 2: n nE +→F F is the (n+1, n ) parity check code, the composite E L is a linear code. Further, if the 

minimum distance for C in 2 1l + , then E L gives a linear code with minimum distance 2 2l + .

Proof: Let 1G be the generator matrix for 1G . 1G is an n n+1 × matrix as shown in (1.2).  We know that 

for ( )2 ,kX L X XG∈ =
  

F where G is the generator matrix for L. For 2
ny∈


  F  , ( ) 1y yG=

 
F .

As ( ) 2, ky L X X= ∈
  

F

( ) ( ) ( ) ( )1 1E y E XG XG G X GG= = =
   

E L is a linear code having the generator matrix 1GG
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Next, Let 2 1l + be the minimum distance for L. For ( )0 1 1 2....... k
kA A A A −= ∈


F

( ) ( ) 10 1 1 0 1....... .....k k nE L A E L A A A A A A A− −= =


  where 0 1 1......n nA A A A −= + + by vertex of the property 

of 1G . 0nA = or 1 ,  So if  minimum distance of C is 2 1 ,l E L+  gives a code whose minimum distance is

2 2l + .

Corollary For the Hamming code 2, 2 1, 2 1 ,3r r
rH r − − −  the extended Hamming code is 

2 , 2 1 ,4r r r − −  which is the Reed- Muller code of length 2r .

2. PUNCTURING OF CODES

We consider binary linear codes defined by 2 2: k nL →F F and 1 2 2: n rE →F F where r n< , As in 

section 1, the composite 1E L in also a linear code. If 1 ImC L= has the generator matrix 

( )G a k n matrix× and 1
1ImC E= has the generator matrix 1G ( n r× matrix), the generator matrix for

1E L is G 1G which is a k r× matrix.

The effect of  1E L is to transform a code word c


of length  n to a code word, 
1

c


of length r, The 

number of columns of G 1G will be less than the number of columns of G .  When 1r n= − , it amounts to 

puncturing the code C


represented byG , by deleting the same coordinate i from each code word. The 

resulting code 1c is still linear and has length ( )1n − (we denote the punctured code by C*)

Theorem 2 If 1
2 2 2 2: , :k n n rL E→ →F F F F give linear codes and if the generator matrices associated with 

them as G& 'G repetitively, the generator matrix associated with 'E L is given by G 'G .

Proof is similar to that of  theorem 1. 

Corollary The Reed -Muller code R(r, m) is a 2 , , 2m m rk −   code where k is its dimension

1 .............
1 2
m m m

r
     

+ +     
     

and r < m. The puncturing of R  ( r, m) yields a binary code 

2 1, , 2 1m m rk − − −  ,when m=3, puncturing of [8,4,4]  code gives the binary Hamming code [ 7, 4, 3] .

Remark C [n,  k ,d] denotes a binary linear code. To puncture C is to delete the same coordinate i from each 

code word. The punctured code is denoted by [ ]* 1, , *C n k d+ . If G denotes the generator   matrix of C the 
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generator G* of C* is obtained from G 'G .  'G is the ( )1n n× − matrix which is  got from the ( )n n× unit 

matrix by deleting the thi column. In the case where C is a [24 , 12, 8] (Golay) code, by puncturing in any of 

the coordinates, we obtain  C* = [ 23 , 12, 7] binary code.
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