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Unsteady Generalized Couette Flow of a Couple
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The flow between two parallel plates, one of which is at rest while the other is moving in its own plane

with constant speed is called a simple Couette flow. The flow between two parallel plates produced by

a constant pressure gradient in the direction of the flow is called a two dimensional Poiseuille flow. The generalized

Couette flow is a superimposition of the simple couette flow over the two dimensional Poiseuille flow [2]. This type of

flow is very important and there are many practical applications as observed by Erdogen [1]. This chapter is intended
to study this problem taking couple stress fluid between the two parallel plates.

Basic equations of an incompressible couple stress fluid flow : Introducing the non-dimenssionalization scheme given by

- - b~ U ~
The basic equations describing an incompressible couple stress fluid flow in the absence y=by x=bv w=Ui t= Et = %P ®
of body forces are given by 3] and defining
pUb no_
e R=— R g
dv(7)=0 () P v

p[ % . (q .Vq’)] - g d(p) - et @r(§) +n, cnlcurlcur (7)) 0 after dropping the tildes the equation (4) reduces to,

w 0%

4
- u_ g (10)
a gl o'

where ¢ is the velocity vector , p is the fluid pressure , 4 is the viscosity coefficient

and 7, is the gyro viscosity coefficient . Let an incompressible couple stress fluid fill the Then we have to solve the equation

4
region between two parallel plates at y = -h and y = h and be initially at rest . Let us R==G+—-d iy% (1

consider the motion of the fluid which occurs due to the imposition of a constant pressure ) »
subject to the conditions (a) :

gradient and the simultaneous motion of the upper plate with a constant velocity U. The
ull,ty=1 u(=Lt) =0 for >0

flow generated is assumed to be in the form u(yp0)=0 for -1<y<1 and t<0 (12)
= (u(y,1),0,0) ©)
Qu .
The velocity vector satisfies the continuity equation and is governed by the equation and o 0 for y=tl andt>0 (13)
a_ _[@J+ o - 1& ) and subject to the conditions (b) :
a )yt Tt
ullLty=1 u(-Lt) =0 for t>0"
with the conditions u(p0) =0 for -1<y<l and <0 (14)
u(y0)=0 -b<y<h (5
o .
u(=b1)=0  for all t and w:o for y=tl andt>0 (15)
6 ’
ubt)=U  for t>0° (6)
As t— o, it is natural that the flow becomes steady. Hence the equation (11) becomes
and
4 2
N az%fd—?fG” -0 (16)
a:ﬂ for <0 %) y
=G for1>0' since u = u(y).
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To get the steady flow field we have to solve the above equation and implement the
boundary conditions (a) or conditions (b) as explained in the introduction.
The equation (16) can be rewritten in the form

DZ(DtL)u = G— a7
a” a”

where
- d
u=u(y) and D=—
dy
It is seen that the most general solution of equation (17) is given by

vla —vla ~)’2
u=A+By+Ce’"+De —67 (18)

Implementing the conditions (a), after a series of routine calculations, the steady state

velocity is seen to be

1 cosh l/a
u, (y)==+(1-y’-2acothl/a) —————————— y +
el 2 a-y / )2(cosh]/a—asinhhl/a 7
.o a.. . (19)
a G (asinh 1/a—cosh 1/a)(cosh y/a)Jrgsmh l/asinh y/a
sinh 1/a(asinh 1/a —acosh 1/a)
Using conditions (b) the steady state velocity u is obtained as
1+y+G (1-y*-2a") a’ G’ cosh y/a
u, ()= H2* G-y ), y/a
2 cosh1/a (20)

General problem using conditions (a) :
As we have to solve the general unsteady problem governed by equations (11), (12) and
(13) we assume that

u(y.1) = f(:1) +uy (y) 21
hence u,(y) is given by equation(19) with  u(y,5) > u(y) as t > .
This implies that f(y,1)—>0as t—>w.
Further the condition u(-1,t) =0 yields

fl-1,5)=0 (22)

The condition u(1,t)=1 implies that

Sty +u, () =1 andas u,(l) =1, we get

f00=0 23)

N
Using equation (21) in equation (10), since conditions (a) needs ;}—u =0o0n y==+1 , W¢

get g:[)on y =1
o

We notice that f(y,t) is governed by the differential equation

2 PN
A L 24

o o’ o'
subject to the boundary conditions (a)
JEL) =0
5). *
The equation (21) implies that
F(2,0) = u(3,0)=uy () (26)
As u(y,0) = 0, this results in
J30) = —uy(y) @n
Hence we have to solve equation (24) subject to the initial condition in equation (27) ar
boundary conditions in equation (25).

Taking Laplace transform of equation (24) and using equation (27), we g
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(28)
This can be rewritten as
(0=t D* - ) ] = - @9)
where u,, for the present case is given by equation (19) where
aep-L g B (30)
a a

The solution of equation (29) by elementary but straight forward calculation is given by
u=Ae?” +Be™® +Ce® +De” +P(y,s) (€2))

where

2s Rs

}+L%v
2s gsinh %— cosh% .
2a [sinh%sinh%+20‘(u sinh%fcosh%)cosh%

711 sinh%(u sinh%—cosh%)

In equation (31) 4,B,C,D are arbitrary constants which are to be determined subject to

P(y,5)=— {1 +G"(1-2acoth I/~ y? S

(32)

the conditions obtained by taking the Laplace Transforms of those in equation (25)

Thus 4, B, C, D are to be obtained from equations (31), (32) implementing the condition:

JLs) =0
7 (33)

Once again, using equation (31) and equation(33), we notice that the constants 4,B,C,D

can be determined, by solving the simultaneous linear equations in 4,B8,C,D given by

Aeugmwemwﬂ:_{Gz_l] 34
Rs s
i poa B s [G
A" +Be" +Cel +Def = — (35)
Rs
Aae” -Bae™® +CPe” -DPe’ =0 (36)
Aae™® -Bae® +Cpe™” —D pe =0 (37)

Solving the equations (34) — (37) for the unknowns 4,B,C,D we get

_-Qupsinhp_ 0, peosh B

A
2R, 2R,
Be -0, fsinh g R Peosh
2R, 2R,
C:Ql asinha 0, acosha 38)
2R, 2R,
D:Ql a sinha . 0, acosha
2R, 2R,
where
G 1 1
nyrxz 7 Qz-z

R, =B coshasinh f—asinh a cosh f#
R, =f sinha cosh f—a coshasinh f#
And thus f(y,s) and hence i(y,s) are completely determined. The expression for @ (y,s)

can be seen to be

A(s) = L,i fsinh ff cosh ay — a sinh & cosh Sy
. 25 Rs® J\ Bsinh Bcoshha —asinhacosh B
+L cosh fsinh ay—a cosh asinh Sy N G
25| Pcosh Bsinha—acoshasinh B | Rs’

(39

General problem using conditions (b) :

The conditions (b) proposed by V.K.Stokes as mentioned earlier, are
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u(tli) =0

and

(40)

(41)

for y==1 and forall (>0

Hence, we have to solve the general unsteady problem governed by equations (11) and
(42)

subject to the boundary conditions given in equations (13) and (14).

Here again, we assume
u(y.t) = f(3.0) +uy ()
where u,,(y) is given by equation (20) with the assumption that

fELn =0,

J (49)
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o’ Bsinh fcosh ay — B’ sinh & cosh fy

P
Rs’ ) [ psinh Bcosh i — asinh a cosh
a’ Bcosh Bsinhay— B @ coshasinh By
Pcosh Bsinha—acoshasinh g

du_ (1
2s

S
1
+—
ZS[

For condition (b) for y = +1

=]

cosha coshay

AU+ |+

sinh Bsinh Ay
(50)

sivha sivhay )02
sinh @ cosh @ sinh B cosh /3
ﬂ(l+ﬂ2)a2:|

 cosh fcosh fiy
cosh fsinh

L
1 2s
1

Z{ coshasinh a

a(l+a®) p*

2 _g2

Numerical results and discussion :
is inverted numerically for each of the conditions (a) and (b)

The expression (v, s)
for different values of y and different values of t for diverse values of the parameters a,
Gand R . The variation of u(y.t) is displayed through graphs.

In figure (1) we have presented the variation of velocity with the distance y from

the stationary plate to the moving plate for diverse values of time t with G=2, a=0.5 and

u(y,t) > uy (y) ast—>®.
Further the conditions in equation (13) and (14) as proceeding in case (a) yield
fELD =0, f(3,0) = —uy (y) (43)
and
ZLELD o “4) . T
ay” R=5. For any fixed y as time increases, we observe that the velocity is increasing as can
Taking Laplace transform of the equation (11) , using equations (42), (43), (44) and the be expected from the physics of the problem.
initial conditions In figure (2) for a fixed t=1, pressure gradient G=2 and Reynolds number R=5,
.- we show the variation of velocity with respect to y as the couple stress parameter
o7 f(x1
L}v’) - (45)
g increases. An increase in couple stress parameter indicates an increase in the effect of
couple stresses. From figure (2) as a increases ,nearer to the stationary plate, initially as y
increases there is a decreas in velocity. However as y is increased this trend is reversed.
That is as “a” increases, nearer to the moving plate, for any y velocity shows an
increasing trend. i.¢ as y increases from -1 to +1 , there is a critical value of y where the

we get
J(y.s) = Ae® +Be™ +Ce + De™ + P(y,5)

264
Rs s

Implementing the conditions in equation (45), we get

where here

-i[1+y+c;‘(1-2a2 -y
2s

P(y,s)
7[7Q, sinha+Q, coshoz],ﬂ2
2 ,Hz —a?Jsinha coshar

B*PQl sinha -0, cosha]ﬁ2
2% - a* Jsinh & cosh &

c- [0, sinh p- 0, cosh o’

e [0, sinh 5+ 0, cosh S’
2 éz —a? Jcosh Bsinh h

Thus f(y,s) is completely determined and hence with the conditions (b), i(y,s)

G a® coshyla
coshl/a

initial decreasing trend of the velocity is reversed and the velocity shows a continuous
increasing trend. This is in tune with the observation made by V.K.Stokes [3] while

discussing the Couette flow of a couple stress fluid between two parallel plates where the
lower one is stationary and the upper one is moving with a constant velocity.

In figure (3) we have plotted the variation of velocity with different values of the

(46)
pressure gradient when t=1 , a=0.5 and R=5 . As G increases, the velocity shows at any

point an increasing trend.
Figure (4) shows the variation of velocity with distance as R varies while t,2 and,G

are fixed as 1, 0.5 and 2 respectively . Here as R increases for any y, the velocity

decreases.
Figures (5) (6) (7) and (8) respectively show, the variation of velocity with distance

while time varies, parameter “a” varies, pressure gradient parameter G varies and

Reynolds number R varies respectively for boundary condition (b). The results in this

1

1

is given by
G sinha coshay ), sinh fcosh fy 2l
_ 1 25 Rs? sinh & cosh sinh ff cosh # G
0:9) = 77— +
“-a’J} 1| coshasinhay , coshfsinh fy o Rs*  (47)
25| coshasinha cosh fsinh /3
case are qualitatively similar to those obtained for boundary conditions (a). This is similar
to the observations made by Devakar [4] while considering generalized Stoke’s problems

The skin friction on the plates is given by

“3)
for a couple stress fluid.

B [aa a-‘a]
e =| 3
A -

For condition (a) for = +1
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boundary Condition (A)
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Figure (4) : Variation of velocity with distance for vari-
ous values of Rwhent=1;a=0.5G =2
Boundary Condition (B)

Figure (1): Variation of velocity with distance for vari-
ous values of t when G =2; a =0.5; R =5.
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Figure (2): Variation of velocity with distance for vari- distance-y

ous values of awhent=1;,G=2;,R=5.
Figure (5) : Variation of velocity with distance for vari-

ous values of t when G = 2; a = 0.5; R = 5.
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Figure (3): Variation of velocity with distance for vari- e
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ous values of Gwhent=1;a=0.5R=5

Figure ( 6) : Variation of velocity with distance for vari-
ous values of awhen t =1, G =2; R =5.
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Figure (8) : Variation of velocity with distance for vari-
ous values of Rwhen t=1;a=0.5;G = 2.

Figure (7) : Variation of velocity with distance for vari-

ous values of G when t=1; a=0.5;R=5.
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