Unsteady Generalized Couette Flow of a Couple Stress Fluid between two Parallel Plates

KEYWORDS

G. Shantha
Department of Mathematics and Humanities, Mahatma Gandhi Institute of Technology, Hyderabad - 500078, India

M. Sunitha
Department of Mathematics, University College for Women, Osmania University, Hyderabad-500 001, India

B. Shanker
Department of Mathematics, Osmania University, Hyderabad- 506 004, India

ABSTRACT
The flow between two parallel plates, one of which is at rest while the other is moving in its own plane with constant speed is called a simple Couette flow. The flow between two parallel plates produced by a constant pressure gradient in the direction of the flow is called a two dimensional Poiseuille flow. The generalized Couette flow is a superimposition of the simple couette flow over the two dimensional Poiseuille flow [2]. This type of flow is very important and there are many practical applications as observed by Erdogen [1]. This chapter is intended to study this problem taking couple stress fluid between the two parallel plates.

Basic equations of an incompressible couple stress fluid flow:
The basic equations describing an incompressible couple stress fluid flow in the absence of body forces are given by [3]
\[
div(v) = 0
\]
(1)
\[
\rho \left(\frac{\partial v}{\partial t} + v \cdot \nabla v \right) = -\nabla p + \mu (\nabla^2 v + (\nabla v) \cdot (\nabla v)) + \eta \epsilon \nabla \times (\nabla \times v)
\]
(2)
where \(v \) is the velocity vector, \(p \) is the fluid pressure, \(\mu \) is the viscosity coefficient and \(\eta \) is the gyro viscosity coefficient. Let an incompressible couple stress fluid fill the region between two parallel plates at \(y = -h \) and \(y = h \) and be initially at rest. Let us consider the motion of the fluid which occurs due to the imposition of a constant pressure gradient and the simultaneous motion of the upper plate with a constant velocity \(U \). The flow generated is assumed to be in the form
\[
v = (u(x,t), 0, 0)
\]
(3)
The velocity vector satisfies the continuity equation and is governed by the equation
\[
\frac{\partial^2 u}{\partial y^2} + \frac{1}{\rho} \left(\frac{\partial p}{\partial x} - \eta \frac{\partial^2 u}{\partial y^2} \right) = \frac{\partial^2 u}{\partial y^2} + \frac{1}{\rho} \left(\frac{\partial p}{\partial x} - \eta \frac{\partial^2 u}{\partial y^2} \right)
\]
(4)
with the conditions
\[
u(y,0) = 0 \quad -b \leq y \leq b
\]
(5)
\[
u(-b,t) = 0 \quad \text{for all } t
\]
\[
u(b,t) = U \quad \text{for } t > 0
\]
(6)
and
\[
\frac{\partial u}{\partial t} = 0 \quad \text{for } t < 0
\]
\[
= -G \quad \text{for } t > 0
\]
(7)
Introducing the non-dimensionalization scheme given by
\[
y = \frac{y}{b} \quad x = \frac{x}{b} \quad u = \frac{u}{U} \quad t = \frac{t}{T} \quad \rho = \frac{\rho}{\rho_0} \quad \mu = \frac{\mu}{\mu_0}
\]
(8)
and defining
\[
R = \frac{\rho_0 \mu_0}{\rho \mu} \quad \frac{\eta}{\partial y} = \alpha^2
\]
(9)
after dropping the tildes the equation (4) reduces to,
\[
\frac{\partial^2 u}{\partial y^2} + \frac{R}{\rho} \left(\frac{\partial p}{\partial x} - \eta \frac{\partial^2 u}{\partial y^2} \right) = \frac{\partial^2 u}{\partial y^2} + \frac{R}{\rho} \left(\frac{\partial p}{\partial x} - \eta \frac{\partial^2 u}{\partial y^2} \right)
\]
(10)
Then we have to solve the equation
\[
\frac{\partial^2 u}{\partial y^2} + G \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial y^2} + G \frac{\partial^2 u}{\partial y^2}
\]
(11)
subject to the conditions (a) :
\[
u(-L_0,t) = 0 \quad \text{for } t > 0
\]
\[
u(y,0) = 0 \quad \text{for } -L_0 \leq y \leq L_0
\]
and \(\frac{\partial u}{\partial y} = 0 \) for \(y \geq 1 \) and \(t > 0 \)
(12)
and subject to the conditions (b) :
\[
u(L_0,t) = 1 \quad \text{for } t > 0
\]
\[
u(y,0) = 0 \quad \text{for } -L_0 \leq y \leq L_0
\]
and \(\frac{\partial u}{\partial y} = 0 \) for \(y \leq 1 \) and \(t > 0 \)
(13)
and subject to the conditions (b) :
\[
u(L_0,t) = 1 \quad \text{for } t > 0
\]
\[
u(y,0) = 0 \quad \text{for } -L_0 \leq y \leq L_0
\]
and \(\frac{\partial u}{\partial y} = 0 \) for \(y > 1 \) and \(t > 0 \)
(14)
As \(t \to \infty \), it is natural that the flow becomes steady. Hence the equation (11) becomes
\[
a \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} = 0
\]
(15)
since \(u = u(y) \).
To get the steady flow field we have to solve the above equation and implement the boundary conditions (a) or conditions (b) as explained in the introduction.

The equation (16) can be rewritten in the form

$$D^4 (D^3 - \frac{1}{a^2}) u = G^*$$

(17)

where

$$u = u(y)$$ and $$D = \frac{\partial}{\partial y}$$

It is seen that the most general solution of equation (17) is given by

$$u = A + B y + C e^{a y} + D e^{-a y} - G^* \frac{y^2}{2}$$

(18)

Implementing the conditions (a), after a series of routine calculations, the steady state velocity is obtained as

$$u = u(y) = \frac{1}{2} (1 - y^2 + 2 a \cosh \frac{1}{a} y)$$

(19)

$$= \frac{a^2}{2} \gamma \γ
The skin friction on the plates is given by

$$\tau_{f} = \left(\frac{\partial \Pi}{\partial y} \right)_{y = \pm 1}$$

For condition (a) for \(y = \pm 1 \)

Implementing the conditions in equation (45), we get

$$f(x, \pm 1) = \pm a_f(\pm 1)$$

and

$$\frac{\partial^2 f(x, \pm 1)}{\partial y^2} = 0$$

Taking Laplace transform of the equation (11), using equations (42), (43), (44) and the initial conditions

$$f(x, 0) = 0 \quad \text{and} \quad \frac{\partial f(x, 0)}{\partial y} = 0$$

we get

$$\tilde{f}(y, s) = Ae^{s} + B e^{-s} + C e^{-s} + D e^{s} + P(y, s)$$

where

$$P(y, s) = -\frac{1}{2} \left[1 + G \left(1 - 2a^2 - y^2 - \frac{2}{R s} \right) \right] G^* \alpha \cosh(y/a) \cosh(y/a)$$

Implementing the conditions in equation (45), we get

$$A = \left(\frac{Q_1 \sinh \alpha + Q_2 \cosh \alpha}{2 \beta^2 - a^2} \right) \sinh \alpha \cosh \alpha$$

$$B = \left(\frac{Q_1 \sinh \alpha - Q_2 \cosh \alpha}{2 \beta^2 - a^2} \right) \sinh \alpha \cosh \alpha$$

$$C = \left(\frac{Q_1 \sinh \beta - Q_2 \cosh \beta}{2 \beta^2 - a^2} \right) \cosh \beta \sinh \beta$$

$$D = \left(\frac{Q_1 \sinh \beta + Q_2 \cosh \beta}{2 \beta^2 - a^2} \right) \cosh \beta \sinh \beta$$

Thus \(\tilde{f}(y, s) \) is completely determined and hence with the conditions (b), \(\tilde{\pi}(y, s) \) is given by

$$\tilde{\pi}(y, s) = \left[\frac{1}{\beta^2 - a^2} \right] \left[\begin{array}{c} \sinh \alpha \cosh \alpha \\ \sinh \alpha \cosh \alpha \\ \sinh \beta \cosh \beta \\ \cosh \beta \sinh \beta \end{array} \right]$$

$$\frac{G^*}{R s}$$

$$\Pi(y, s) = \frac{1}{\beta^2 - a^2} \left[\begin{array}{c} \sinh \alpha \cosh \alpha \\ \sinh \alpha \cosh \alpha \\ \sinh \beta \cosh \beta \\ \cosh \beta \sinh \beta \end{array} \right]$$

$$\frac{G^*}{R s}$$

The skin friction on the plates is given by

$$\tau_{f} = \left(\frac{\partial \Pi}{\partial y} \right)_{y = \pm 1}$$

For condition (b) for \(y = \pm 1 \)

The expression \(\tilde{\pi}(y, s) \) is inverted numerically for each of the conditions (a) and (b) for different values of \(y \) and different values of \(t \) for diverse values of the parameters \(a \), \(\beta \) and \(\alpha \).

Gand R. The variation of \(\alpha(y, t) \) is displayed through graphs.

In figure (1) we have presented the variation of velocity with the distance \(y \) from the stationary plate to the moving plate for diverse values of \(t \) with \(G=2, a=0.5 \) and \(R=5 \). For any fixed \(y \) as time increases, we observe that the velocity is increasing as can be expected from the physics of the problem.

In figure (2) for a fixed \(t=1 \), pressure gradient \(G=2 \) and Reynolds number \(R=5 \), we show the variation of velocity with respect to \(y \) as the couple stress parameter increases. An increase in couple stress parameter indicates an increase in the effect of couple stresses. From figure (2) as \(a \), nearer to the stationary plate, initially as \(y \) increases there is a decrease in velocity. However as \(y \) is increased this trend is reversed. That is as \("a" \) increases, nearer to the moving plate, for any \(y \) velocity shows an increasing trend. i.e. as \(y \) increases from \(-1 \) to \(+1 \), there is a critical value of \(y \) where the initial decreasing trend of the velocity is reversed and the velocity shows a continuous increasing trend. This is in tune with the observation made by V.K.Stokes [3] while discussing the Couette flow of a couple stress fluid between two parallel plates where the lower one is stationary and the upper one is moving with a constant velocity.

In figure (3) we have plotted the variation of velocity with different values of the pressure gradient when \(t=1 \), \(a=0.5 \) and \(R=5 \). As \(G \) increases, the velocity shows at any point an increasing trend.

Figure (4) shows the variation of velocity with distance as \(R \) varies while \(a \) and \(G \) are fixed as \(1, 0.5 \) and \(2 \) respectively. Here as \(R \) increases for any \(y \), the velocity decreases.

Figures (5) (6) (7) and (8) respectively show, the variation of velocity with distance while time varies, parameter “a” varies, pressure gradient parameter \(G \) varies and Reynolds number \(R \) varies respectively for boundary condition (b). The results in this case are qualitatively similar to those obtained for boundary conditions (a). This is similar to the observations made by Devakar [4] while considering generalized Stokes’s problems for a couple stress fluid.
boundary Condition (A)

Figure (1): Variation of velocity with distance for various values of t when $G = 2; a = 0.5; R = 5$.

Figure (2): Variation of velocity with distance for various values of a when $t = 1; G = 2; R = 5$.

Figure (3): Variation of velocity with distance for various values of G when $t = 1; a = 0.5; R = 5$.

Figure (4): Variation of velocity with distance for various values of R when $t = 1; a = 0.5; G = 2$.

Boundary Condition (B)

Figure (5): Variation of velocity with distance for various values of t when $G = 2; a = 0.5; R = 5$.

Figure (6): Variation of velocity with distance for various values of a when $t = 1; G = 2; R = 5$.

Figure (7): Variation of velocity with distance for various values of G when $t = 1; a = 0.5; R = 5$.

Figure (8): Variation of velocity with distance for various values of a when $t = 1; G = 2; R = 5$.

Figure (9): Variation of velocity with distance for various values of G when $t = 1; a = 0.5; R = 5$.
Figure (7): Variation of velocity with distance for various values of G when \(t = 1; a = 0.5; R = 5 \).

Figure (8): Variation of velocity with distance for various values of R when \(t = 1; a = 0.5; G = 2 \).

REFERENCE