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ABSTRACT The flow between two parallel plates, one of which is at rest while the other is moving in its own plane 
with constant speed is called a simple Couette flow. The flow between two parallel plates produced by 

a constant pressure gradient in the direction of the flow is called a two dimensional Poiseuille flow.  The generalized 
Couette flow is a superimposition of the simple couette flow over the two dimensional Poiseuille flow [2].  This type of 
flow is very important and there are many practical applications as observed by Erdogen [1].  This chapter is intended 
to study this problem taking couple stress fluid between the two parallel plates.

1

Basic equations of an incompressible couple stress fluid flow :

The basic equations describing an incompressible couple stress fluid flow in the absence

of body forces are given by [3]
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where  q is the velocity vector  , p is the fluid pressure , µ is the viscosity coefficient 

and 1η is the gyro viscosity coefficient . Let an incompressible couple stress fluid fill the 

region between two parallel plates at y = -h and y = h and be initially at rest . Let us 

consider the motion of the fluid which occurs due to the imposition of a constant pressure 

gradient and the simultaneous motion of the upper plate with a constant velocity U. The 

flow generated is assumed to be in the form 
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The velocity vector satisfies the continuity equation and is governed by the equation
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Introducing the non-dimenssionalization scheme given by 
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after dropping the tildes the equation (4) reduces to,
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Then we have to solve the equation

4

4
2

2

2
*

y
ua

y
uG

t
uR

∂

∂
−

∂

∂
+=

∂
∂ (11)

subject to the conditions (a) :
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and subject to the conditions (b) :
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As ∞→t ,  it is natural that the flow becomes steady. Hence the equation (11) becomes 
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since u = u(y).
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To get the steady flow field we have to solve the above equation and implement the 

boundary conditions (a) or conditions (b) as explained in the introduction.  

The equation (16) can be rewritten in the form
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where 

u = u(y)      and 
dy
dD =

It is seen that the most general solution of equation (17) is given by 
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Implementing the conditions (a), after a series of routine calculations,  the steady state 

velocity is seen to be
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Using conditions (b) the steady state velocity u is obtained as
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General problem using conditions (a) :

As we have to solve the general unsteady problem governed by equations (11), (12) and 

(13) we assume that
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Further the condition u(-1,t) = 0  yields

f(-1,t) = 0                                                            (22)

The condition  u(1,t) = 1  implies that 
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We notice that f(y,t) is governed by the differential equation 
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subject to the boundary conditions (a)
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The equation (21) implies that 
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As  u(y,0) = 0, this results in
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Hence we have to solve equation (24) subject to the initial condition in equation (27) and 

boundary conditions in equation (25).

Taking Laplace transform of equation (24) and using equation (27), we get 
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This can be rewritten as 
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where stu for the present case is given by equation (19) where
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The solution of equation (29) by elementary but straight forward calculation is given by
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In equation (31)  A,B,C,D are arbitrary constants which are to be determined subject to 

the conditions obtained by taking the Laplace Transforms of those in equation (25)

Thus A, B, C, D are to be obtained from equations (31), (32) implementing the conditions 
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Once again, using equation (31) and equation(33), we notice that the constants A,B,C,D

can be determined, by solving the simultaneous linear equations in A,B,C,D given by 
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Solving the equations (34) – (37) for the unknowns  A,B,C,D we get
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And thus ),( syf and hence ),( syu are completely determined. The expression for ),( syu

can be seen to be
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General problem using conditions (b) :

The conditions (b) proposed by V.K.Stokes as mentioned earlier, are 
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Hence, we have to solve the general unsteady problem governed by equations (11) and 

subject to the boundary conditions given in equations (13) and (14).

Here again, we assume 
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where )(yust is given by equation (20) with the assumption that 
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Taking Laplace transform of the equation (11) , using equations (42), (43), (44) and the 
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Implementing the conditions in equation (45), we get 
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Thus ),( syf is completely determined and hence with the conditions (b), ),( syu

is given by 
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The skin friction on the plates is given by 
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For condition (a) for 1±=y
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For condition (b) for 1±=y
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Numerical results and discussion :

The expression ),( syu is inverted numerically for each of the conditions (a) and (b) 

for different values of y and different values of t for diverse values of the parameters a, 

Gand R . The variation of u(y,t) is displayed through graphs.

In figure (1) we have presented the variation of velocity with the distance y from 

the stationary plate to the moving plate for diverse values of time t with G=2, a=0.5 and 

R=5.  For any fixed y as time increases, we observe that the velocity is increasing as can  

be expected from the physics of the problem.

In figure (2) for a fixed t=1, pressure gradient G=2 and Reynolds number R=5, 

we show the variation of velocity with respect to y as the couple stress parameter 

increases. An increase in couple stress parameter indicates an increase in the effect of 

couple stresses. From figure (2) as a increases ,nearer to the stationary plate, initially as y 

increases there is a decreas in velocity. However as y is increased this trend is reversed. 

That is as “a” increases, nearer to the moving plate, for any y velocity shows an 

10

increasing trend. i.e  as y increases from -1 to +1 , there is a critical value of y where the 

initial decreasing trend of the velocity is reversed and the velocity shows a continuous 

increasing trend. This is in tune with the observation made by V.K.Stokes [3] while 

discussing the Couette flow of a couple stress fluid between two parallel plates where the 

lower one is stationary and the upper one is moving with a constant velocity.

In figure (3) we have plotted the variation of velocity with different values of the 

pressure gradient when t=1 , a=0.5 and R=5 .  As G increases, the velocity shows at any 

point an increasing trend.

Figure (4) shows the variation of velocity with distance as R varies while t,a and,G 

are fixed as 1, 0.5 and 2 respectively . Here as R increases for any y, the velocity 

decreases.

Figures (5) (6) (7) and (8) respectively show, the variation of velocity with distance 

while time varies, parameter “a” varies, pressure gradient parameter G varies and 

Reynolds number R varies respectively for boundary condition (b). The results in this 

case are qualitatively similar to those obtained for boundary conditions (a). This is similar 

to the observations made by Devakar [4] while considering generalized Stoke’s problems 

for a couple stress fluid.

boundary Condition (A)
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Figure (4) : Variation of velocity with distance for vari-
ous values of R when t = 1; a = 0.5; G = 2 

Boundary Condition (B) 
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Figure (5) : Variation of velocity with distance for vari-
ous values of t when G = 2; a = 0.5; R = 5. 
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Figure ( 6) : Variation of velocity with distance for vari-
ous values of a when t = 1; G = 2; R = 5.

boundary Condition (A)
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Figure  (1):  Variation of velocity with distance for vari-
ous values of t when G = 2; a = 0.5; R = 5.
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Figure (2):  Variation of velocity with distance for vari-
ous values of a when t = 1; G = 2; R = 5.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

distance-y

V
el

o
ci

ty
 -

 u

G=2
G=4
G=6
G=8

Figure  (3):  Variation of velocity with distance for vari-
ous values of G when t = 1; a = 0.5; R = 5
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Figure (7) : Variation of velocity with distance for vari-
ous values of G when t = 1; a = 0.5; R = 5.
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Figure  (8) :  Variation of velocity with distance for vari-
ous values of R when t = 1; a = 0.5; G = 2.
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