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ABSTRACT In this paper we introduce intuitionistic fuzzy generalized beta continuous mappings and intuitionistic fuzzy 
generalized beta irresolute mappings. We investigate some of their properties. Also we provide some char-

acterization of intuitionistic fuzzy generalized beta continuous mappings and intuitionistic fuzzy generalized beta irresolute 
mappings.

INTRODUCTION
Atanassov [1] introduced the notion 

of intuitionistic fuzzy sets. Using the notion 
of intuitionistic fuzzy sets, Coker [3] 
introduced the notion of intuitionistic fuzzy 
topological spaces. Intuitionistic fuzzy beta 
continuous mappings in intuitionistic fuzzy 
topological spaces are introduced by 
Coker[3]. In this paper we introduce 
intuitionistic fuzzy generalized beta 
continuous mappings and intuitionistic fuzzy 
generalized beta irresolute mappings and we 
provide some characterizations.

Preliminaries
Definition 2.1: [1] An intuitionistic fuzzy set
(IFS in short) A in X is an object having the 
form

A = {〈x, μA (x), νA(x)〉 /
x∈ X}

where the functions μA : X → [0,1] and νA: X 
→ [0,1] denote the degree of membership 
(namely μA(x)) and the degree of non -
membership (namely νA(x)) of each element 
x ∈X to the set A, respectively, and 0 ≤ μA

(x) + νA(x) ≤ 1 for each x ∈X. Denote by IFS 
(X), the set of all intuitionistic fuzzy sets in 
X.

Definition 2.2: [1] Let A and B be IFSs of 
the form A = {〈x, μA (x), νA(x)〉 / x∈X} and                  
B = { 〈x, μB (x), νB(x)〉 / x∈ X}. Then

(a) A ⊆ B if and only if μA (x) ≤ μB (x) 
and νA(x) ≥ νB(x) for all x ∈X

(b) A = B if and only if A ⊆ B and B ⊆
A

(c) Ac = {〈 x, νA(x), μA(x)〉 / x ∈ X} 
(d) A ∩ B = {〈x, μA(x) ∧ μB(x), νA(x) ∨

νB(x)〉 / x ∈ X} 
(e) A ∪ B = {〈x, μA(x) ∨ μB(x), νA(x) ∧

νB(x)〉 / x ∈ X} 

For the sake of simplicity, we shall use the 

notation A = 〈x, μA, νA〉 instead of
A = {〈x, μA(x), νA(x)〉 / x ∈ X}.
The intuitionistic fuzzy sets 0~ = {〈x, 0, 1〉 /
x ∈X} and 1~ = {〈x, 1, 0〉 / x ∈ X} are 
respectively the empty set and the whole set 
of X.

Definition 2.3: [7] The IFS c(α , β ) = 〈 x, cα

, c 1-β 〉 where α ∈ (0, 1] , β ∈ [ 0, 1) and α + β

≤ 1 is called an intuitionistic fuzzy point 
(IFP for short) in X.

Definition 2.4: [3] An intuitionistic fuzzy 
topology (IFT for short) on X is a family τ of 
IFSs in X satisfying the following axioms.
(i) 0~, 1~ ∈ τ
(ii) G1 ∩ G2 ∈ τ for any G1, G2 ∈ τ
(iii) ∪ Gi ∈ τ for any family {Gi / i ∈ J} ⊆ τ.

In this case the pair (X, τ) is called an 
intuitionistic fuzzy topological space (IFTS in 
short) and any IFS in τ is known as an 
intuitionistic fuzzy open set (IFOS in short) 
in X. The complement Ac of an IFOS A in 
IFTS (X, τ) is called an intuitionistic fuzzy 
closed set (IFCS in short) in X.

Definition 2.5:[3] Let (X, τ) be an IFTS and 
A = 〈x, μA, νA〉 be an IFS in X. Then the 
intuitionistic fuzzy interior and intuitionistic 
fuzzy closure are defined by
int(A) = ∪
{G / G is an 
IFOS in X 
and G ⊆ A} 
cl(A) = ∩
{K / K is an 
IFCS in X 
and A ⊆ K}

Note that for any IFS A in (X, τ), we have cl(Ac)
= (int(A))c and int(Ac) = (cl(A))c [3].
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Definition 2.6:[3] An IFS A = 〈x, μA, νA〉 in 
an IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy semi closed set 
(IFSCS in short) if int(cl(A)) ⊆ A 

(ii) intuitionistic fuzzy pre closed set (IFPCS 
in short) if cl(int(A)) ⊆ A 

(iii) intuitionistic fuzzy α closed set (IFαCS 
in short) if cl(int(cl(A)) ⊆ A

(iv) intuitionistic fuzzy beta closed set 

(IFβCS for short) int(cl(int(A))) ⊆ A

The respective complements of the above 
IFCSs are called their respective IFOSs. 

Definition 2.7:[6] An IFS A in an IFTS (X, 
τ) is said to be an intuitionistic fuzzy
generalized beta closed set (IFGβCS for short) if 
βcl(A) ⊆ U whenever A ⊆ U and U is an 
IFOS in (X, τ).

Every IFCS, IFGCS, IFSCS, IFPCS, IFαCS, 
IFβCS and IFSPCS is an IFGβCS but the 
separate converses may not be true in 
general [6].
The family of all IFGβCSs of an IFTS (X, τ)
is denoted by IFGβC(X).

Definition 2.8:[3] 
Let A be an IFS in an 
IFTS (X, τ). Then
βint(A) = ∪ {G / G is 
an IFSPOS in X and 
G ⊆ A}. 
βcl(A) = ∩ {K / K is 
an IFSPCS in X and 
A ⊆ K}.

Note that for any IFS A in (X, τ), we have 
βcl(Ac) = (βint(A))c and βint(Ac) = 
(βcl(A))c [3].

Definition 2.9:[6] The complement Ac of an 
IFGβCS A in an IFTS (X, τ) is called an 
intuitionistic fuzzy generalized beta open set
(IFGβOS for short) in X.

Definition 2.10:[4] Let f be a mapping from 
an IFTS (X, τ) into an IFTS (Y, σ). Then f is 
said to be an intuitionistic fuzzy continuous (IF 
continuous for short) mapping if f -1(B) ∈
IFO(X) for every B ∈ σ.

Definition 2.11: [5] Let f be a mapping 
from an IFTS (X, τ) into an IFTS (Y, σ).
Then f is said to be an

(i) intuitionistic fuzzy semi continuous 
(IFS continuous) mapping if f -

1(B) ∈ IFSO(X) for every B 
∈σ

(ii) intuitionistic fuzzy α- continuous 
(IFα- continuous) mapping if f
-1(B) ∈ IFαO(X) for every B 
∈σ

(iii) intuitionistic fuzzy pre continuous (IFP 
continuous) mapping if f -1(B) 
∈IFPO(X) for every B ∈σ

Definition 2.12: [7] Let f: (X, τ) → (Y, σ) be 
a mapping. Then f is said to be an intuitionistic 
fuzzy generalized continuous (IFG continuous)
mapping if f -1(B) ∈ IFGC(X) for every 
IFCS B in Y.

Definition 2.13:[7] Let c(α, β) be an IFP of 
an IFTS (X, τ). An IFS A of X is called an 
intuitionistic fuzzy neighborhood (IFN for 
short) of c(α, β) if there exists an IFOS B in 
X such that c(α, β) ∈ B ⊆ A.

Definition 2.14:[6] If every IFGβCS in  (X,
τ) is an IFβCS in (X, τ), then the space can 
be called as an intuitionistic fuzzy beta T1/2
space (IFβT1/2 space for short).
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Theorem 2.15:[6] For any IFS A in an IFTS 
(X, τ) wh ere X is an  IFβT1/2 space, A ∈

IFGβO(X) if and only if for every IFP c(α , β

) ∈ A, there exists an IFGβOS B in X such 
that c(α , β ) ∈ B ⊆ A.

3. Intuitionistic fuzzy generalized beta 
continuous mappings

In this section we introduce 
intuitionistic fuzzy generalized beta 
continuous mapping and investigate some of 
its properties.

Definition 3.1: A mapping f: (X, τ) → (Y, 

σ) is called an intuitionistic fuzzy 

generalized beta continuous (IFGβ 

continuous) mapping if f-1(A) is an IFGβCS 

in Y for every IFCS A in X.

Example 3.2: Let X = {a, b}, Y = {u, v} and 
G1 = 〈x, (0.6a, 0.7b), (0.4a, 0.3b)〉, G2 = 〈y,
(0.5u, 0.7v), (0.5u, 0.3v)〉. Then τ = {0~, G1,
1~} and σ = {0~, G2, 1~} are IFTs on X and 
Y respectively. Define a mapping f: (X, τ) →
(Y, σ ) by f(a) = u and f(b) = v. Then f is an 
IFGβ continuous mapping. 

Note that Every IF continuous mapping, IFβ 
continuous mapping, IFSP continuous 
mapping, IFS continuous mapping, IFP 
continuous mapping, IFG continuous 
mapping and  IFα- continuous mapping is 
an IFGβ continuous mapping but not 
conversely. This can be easily seen from the 
following examples. 

Example 3.3: In Example 3.2, f is an  IFGβ 

continuous mapping but not an IF 
continuous mapping, not an IFG continuous 
mapping, and not an IFS continuous 
mapping.

Example 3.4: Let X = {a, b}, Y = {u, v} 
and G1 = 〈x, (0.6a, 0.7b), (0.2a, 0.3b)〉, G2 =
〈x, (0.2a, 0.1b), (0.7a, 0.8b)〉, G3 = 〈x, (0.5a,
0.6b), (0.5a, 0.4b)〉, and let G4 = 〈y, (0.5u,
0.3v), (0.5u, 0.7v)〉. Then τ = {0~, G1, G2,
G3, 1~} and σ = {0~, G4, 1~} are IFTs on X 
and Y respectively. Define a mapping f : (X, 
τ) → (Y, σ) by f(a) = u and f(b) = v. Then f 
is an IFGSP continuous mapping but not an 
IFP continuous mapping, not an IFα 
continuous mapping, and not an IFβ 
continuous mapping.

Example 3.5: Let X = {a, b}, Y = {u, v} 
and G1 = 〈x, (0.5a, 0.4b), (0.5a, 0.6b)〉, G2 =
〈x, (0.2a, 0.3b), (0.8a, 0.7b)〉, G3 = 〈x, (0.5a,
0.5b), (0.4a, 0.5b)〉, G4 = 〈x, (0.6a, 0.8b), 
(0.4a, 0.2b)〉, and let G5 = 〈y, (0.5u, 0.8v),
(0.4u, 0.2v)〉 . Then τ = {0~, G1, G2, G3, G4, 
1~} and σ = {0~, G5, 1~} are IFTs on X and 
Y respectively. Define a mapping f : (X, τ)
→ (Y, σ) by f(a) = u and f(b) = v. Then f is 
an IFGSP continuous mapping but not an 
IFSP continuous mapping, since G5

c is an 
IFCS in Y but f-1(G5

c) is not an IFSPCS in X 
because we cannot find any IFPCS A such 
that int(A) ⊆ f-1(G5

c) ⊆ A.

Theorem 3.6: A mapping f: (X, τ) → (Y, σ)
is an IFGSP continuous mapping if and only 
if the inverse image of each IFOS in Y is an 
IFGβOS in X.
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Proof: The proof is obvious since f -1(Ac) = 
(f -1(A))c.
Theorem 3.7: Let f: (X, τ) → ( Y, σ) be a 
mapping from an IFTS X into an IFTS Y. 
Then the following conditions are equivalent 
if X and Y are IFβT1/2 spaces.

(i) f is an IFGβ continuous mapping 
(ii) f -1(B) is an  IFGβOS in  X fo r 

each IFOS B in Y 
(iii) for every IFP c(α, β) in X and 

for every IFOS B in Y such that 
f(c(α, β)) ∈ B, there exists an 
IFGβOS A in  X su ch  that c(α,
β) ∈ A and f(A) ⊆ B.

Proof: (i) ⇒ (ii) is obvious from the 
Theorem 3.6.
(ii) ⇒ (iii) Let B be any IFOS in Y and let 
c(α, β) ∈ X. Given f(c(α, β)) ∈ B. By 
hypothesis         f -1(B) is an IFGSPOS in X. 
Take A = f -1(B). Now c(α, β) ∈ f -1(f(c(α,
β))). Therefore                      f -1(f(c(α, β)))
∈ f -1(B) = A. This implies c(α, β) ∈ A and 
f(A) = f(f -1(B)) ⊆ B.
(iii) ⇒ (i) Let A be an IFCS in Y. Then its 
complement, say B is an IFOS in Y. Let c(α,
β) ∈ X and f(c(α, β)) ∈ B. Then there exists 
an IFGSPOS, say C = f - 1(B) in X such that 
c(α, β) ∈ C and           f(C) ⊆ B. Therefore f -
1(B) is an IFGβOS in X, by Theorem 2.15. 
That is f -1(Ac) is an  IFGβOS in  X an d 
hence f -1(A) is an IFGβCS in X. Thus f is 
an IFGβ continuous mapping.

Theorem 3.8: Let f: (X, τ) → ( Y, σ) be a 
mapping from an IFTS X into an IFTS Y. 
Then the following conditions are 
equivalent if X and Y are IFβT1/2 spaces.

(i) f is an IFGβ continuous 
mapping 

(ii) for each IFP c(α, β) in X and 
every IFN A of f(c(α, β)), there 
exists an IFGβOS B in X such 
that c(α, β) ∈ B ⊆ f -1(A). 

(iii) for each IFP c(α, β) in X and 
for every IFN A of f(c(α, β)), 
there exists an IFGβOS B in X 
such that c(α, β) ∈ B and f(B) 
⊆ A.

Proof: (i) ⇒ (ii) Let c(α, β) ∈ X and let A be 
an IFN of f(c(α, β)). Then there exists an 
IFOS C in Y such that f(c(α, β)) ∈ C ⊆ A. 
Since f is an IFGβ continuous mapping, f -
1(C) = B (say), is an IFGβOS in X and c(α, β) 
∈ B ⊆ f -1(A).
(ii) ⇒ (iii) Let c(α, β) ∈ X and let A be an 
IFN of f(c(α, β)). Then there exists an 
IFGβOS B in X such that c(α, β)) ∈ B⊆f -
1(A), by hypothesis. Therefore c(α, β)) ∈ B
and f(B) ⊆ f(f-1(A)) ⊆ A.
(iii) ⇒ (i) Let B be an IFOS in Y and let 
c(α, β) ∈ f -1(B). Then f(c(α, β)) ∈ B.
Therefore B is an IFN of f(c(α, β)). Since B 
is IFOS, by hypothesis there exists an 
IFGβOS A in X such that            c(α, β) ∈ A
⊆ f -1(f(A)) ⊆ f -1(B).Therefore f -1(B) is 
an IFGβOS in X, by Theorem 2.15. Hence f 
is an IFGβ continuous mapping. 

Theorem 3.9: Let f: (X, τ) → ( Y, σ) be a 
mapping from an IFTS X into an IFTS Y.
Then the following conditions are equivalent 
if X is an IFβT1/2 space:
(i) f is an IFGβ continuous mapping 
(ii) If B is an IFOS in Y then f-1(B) is an 

IFGβOS in X 
(iii) f -1(int(B)) 
⊆ cl(int(cl(f -
1(B)))) for every 
IFS B in Y. 
Proof: (i) ⇒ (ii) 
is obviously true 
by Theorem 3.6.
 (ii) ⇒ (iii) Let B be any IFS in Y. Then int(B) 
is an IFOS in Y. Then f -1(int(B)) is an IFGβOS 
in X. Since X is an IFβT1/2 space, f -
1(int(B)) is an IFβOS in X. Therefore f -
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1(int(B)) ⊆ cl(int(cl( f -1(int(B))))) 
⊆ cl(int(cl(f -1(B)))).
(iii) ⇒ (i) Let B be an IFCS in Y. Then its 
complement, say A is an IFOS in Y, then 
int(A) = A. Now by hypothesis f -1(int(A)) 
⊆ cl(int(cl(f -1(A)))). This implies f -1(A) 
⊆ cl(int(cl(f -1(A)))). Hence f -1(A) is an 
IFβOS in  X.  Sin ce ev ery IFβOS is an  
IFGβOS, f -1(A) is an IFGβOS in X. Thus f -
1(B) is an IFGβCS in X, since f -1(A) = f -
1(Bc). Hence f is an IFGβ continuous 
mapping.

Theorem 3.10: A mapping f: (X, τ) → (Y,
σ) is an IFGβ continuous mapping if                     
cl(int(cl( f -1(A)))) ⊆ f -1(cl(A)) for every 
IFS A in Y.
Proof: Let A be an IFOS in Y then Ac is an 
IFCS in Y. By hypothesis, cl(int(cl(f -
1(Ac)))) ⊆          f -1(cl(Ac)) = f -1(Ac), 
since Ac is an IFCS. Now (int(cl(int(f -
1(A)))))c = cl(int(cl(f -1(Ac)))) ⊆        f -
1(Ac) = (f -1(A))c. This implies f -1(A) ⊆
int(cl(int(f -1(A)))). Hence f -1(A) is an 
IFαOS and hence it is an IFGβOS. Therefore 
f is an IFGβ continuous mapping, by 
Theorem 3.6.

Theorem 3.11: Let f: (X, τ) → (Y, σ) be a 
mapping from an IFTS X into an IFTS Y.
Then the following conditions are equivalent 
if X is an IFβT1/2 space:
(i) f is an IFGβ continuous mapping
(ii f -1(B) is an 
IFGβCS in X for 
every IFCS B in 
Y
(iii) int(cl(int(f -
1(A)))) ⊆ f-
1(cl(A)) for every 
IFS A in Y. 
Proof : (i) ⇒ (ii) 

is obvious from 
the Definition 
3.1.
(ii) ⇒ (iii) Let A be an IFS in Y. Then cl(A) 
is an IFCS in Y. By hypothesis, f -1(cl(A)) is 
an  IFGβCS in  X.  Sin ce X is an  IFβT1/2
space, f-1(cl(A)) is an IFβCS. Therefore                        
int(cl(int(f-1(cl(A)))))⊆f-1(cl(A)). Now 
int(cl(int(f-1(A))))⊆ int(cl(int(f-1(cl(A))))) 
⊆f -1(cl(A)).
(iii) ⇒ (i) Let A be an IFCS in Y. By 
hypothesis int(cl(int(f -1(A)))) ⊆ f -1(cl(A)) 
= f -1(A). This implies f -1 (A) is an IFβCS 
in X and hence it is an IFGβCS. Thus f is an 
IFGβ continuous mapping.

4. Intuitionistic fuzzy generalized beta 
irresolute mappings

In this section we introduce 
intuitionistic fuzzy generalized beta 
irresolute mappings and study some of their 
properties.

Definition 4.1: A mapping f: (X, τ) → (Y, 
σ) is called intuitionistic fuzzy generalized beta 
irresolute (IFGβ irresolute) mapping if f -1(V) 
is an IFGβCS in (X, τ) for every IFGβCS V 
of (Y, σ).

Theorem 4.2: Let f: (X, τ) → ( Y, σ) be an
IFGβ irresolute mapping, then f is an IFGβ 
continuous mapping but not conversely.
Proof: Let f be an IFGβ irresolute mapping. 
Let V be any IFCS in Y. Then V is an 
IFGβCS and by hypothesis f -1(V) is an 
IFGβCS in  X.  Hen ce f is an  IFGβ 
continuous mapping.

Example 4.3: Let X = {a, b}, Y = {u, v} and 
G1 = 〈x, (0.6a, 0.7b), (0.2a, 0.1b)〉, G2 = 〈x, 
(0.3a, 0.2b), (0.2a, 0.2b)〉, G3 = 〈y, (0.5u,
0.6v), (0.5u, 0.4v)〉 . Then τ = {0~, G1, G2,
1~} and σ = {0~, G3, 1~} are IFTs on X and 
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Y respectively. Define a mapping f: (X, τ)
→ (Y, σ) by f (a) = u and f (b) = v. Then f is 
an IFGβ continuous mapping but not an 
IFGβ irresolute mapping, since the IFS
A = 〈y, (0.5u, 0.3v), (0.2u, 0.1v)〉 is an 
IFGβCS in  Y bu t f -1(A) = 〈x, (0.5a, 0.3b),
(0.2a, 0.1b)〉 ⊆ G1 is n ot an  IFGβCS in  X, 
since βcl(f -1(A)) = 1~ ⊄ G1.

Theorem 4.4: A mapping f: (X, τ) → (Y, σ)
is an IFGβ irresolute mapping if and only if 
the inverse image of each IFGβOS in Y is an 
IFGβOS in X.
Proof: The proof is obvious from the 
Definition 4.1, since f -1(Ac) = (f -1(A)) c.

Theorem 4.5: Let f: (X, τ) → (Y, σ) be an 
IFGβ irresolute mapping, then f is an IFβ 
irresolute mapping if X is an IFβT1/2 space.
Proof: Let V be an IFβCS in Y.  Then V is 
an IFGβCS in Y. Therefore f -1(V) is an 
IFGβCS in X,  by hypothesis. Since X is an 
IFβT1/2 space, f -1(V) is an IFβCS in X. 
Hence f is an IFβ irresolute mapping.

Theorem 4.6: Let f: (X, τ) → (Y, σ) and g: 
(Y, σ) → ( Z, γ) be IFGβ irresolute
mappings, then g ο f : (X, τ) → (Z, γ) is an 
IFGβ irresolute mapping.
Proof: Let V be an IFGβCS in Z.  Then g -
1(V) is an IFGβCS in Y. Since f is an IFGβ 
irresolute, f -1(g -1(V)) is an  IFGβCS in  X, 
by hypothesis. Hence g ο f is an  IFGβ 
irresolute mapping.

Theorem 4.7: Let f: (X, τ) → (Y, σ) be an 
IFGβ irresolute mapping and g: (Y, σ) →
(Z, γ) is an IFGβ continuous mapping, then 
g ο f : (X, τ) → (Z, γ) is an IFGβ continuous 
mapping.
Proof: Let V be an IFCS in Z. Then g -1(V) 
is an  IFGβCS in  Y. Sin ce f is an IFGβ 
irresolute mapping, f -1(g -1(V)) is an 
IFGβCS in X. Hence g ο f is an IFGβ 

continuous mapping.

Theorem 4.8: Let f: (X, τ) → (Y, σ) be a 
mapping from an IFTS X into an IFTS. 
Then the following conditions are equivalent 
if X and Y are IFβT1/2 spaces:

(i) f is an IFGβ irresolute mapping 
(ii) f -1(B) is an  IFGβOS in  X fo r 

each IFGβOS in Y 
(iii) f -1(βint(B)) ⊆ βint(f -1(B)) for 

each IFS B of Y 
(iv) βcl(f -1(B)) ⊆ f -1(βcl(B)) for 

each IFS B of Y 

Proof: (i) ⇒ (ii) is obvious from the 
Theorem 4.4.
(ii) ⇒ (iii) Let B be any IFS in Y and 
βint(B) ⊆ B. Also f -1(βint(B)) ⊆ f -1(B). 
Since βint(B) is an IFβOS in Y, it is an 
IFGβOS in Y. Therefore f -1(βint(B)) is an 
IFGβOS in X, by hypothesis. Since X is an 
IFβT1/2 space, f -1(βint(B)) is an IFβOS in 
X. Hence f -1(βint(B)) = βint(f -1(βint(B))) 
⊆ βint(f -1(B)).
(iii) ⇒ (iv) is obvious by taking 
complement in (iii).
(iv)⇒ (i) Let B be an IFGβCS in Y. Since 
Y is an IFβT1/2 space, B is an IFβCS in Y 
and βcl(B) = B. Hence f -1 (B) = f -
1(βcl(B)) ⊇ βcl(f -1 (B). Therefore             
βcl(f -1(B)) = f -1(B). This implies f-1 (B) 
is an IFβCS and hence it is an IFGβCS in 
X. Thus f is an IFGβ irresolute mapping.
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