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ABSTRACT The steady-state response of a capacitive measuring transducer based on the charge transfer method was an-
alysed. According to the new generalised equivalent circuit of a capacitive sensor which contains a constant 

phase element, the additional error due to this element was calculated. Specific recommendations were given concerning 
the control of the switches and the method of processing the measurement results obtained. Following them, a transducer 
was built that could measure the sensor capacity in the presence of a constant phase element. The simulation in PSpice and 
the experimental study of the transducer confirmed the analytical results obtained.

INTRODUCTION 
Using continuously operating charge transfer circuits in ca-
pacitive transducers is favoured due to their advantages as 
follows [9, 10]: they are simple and low-priced, have excel-
lent characteristics and can be controlled digitally. On the 
other hand, the selection of a differential structure of meas-
uring transducers can help avoid problems caused by bias 
currents, offset voltages and charge injection from analogue 
switches. Furthermore, the linearity of the transfer function 
is improved, and better signal\noise ratio and resistance to 
interference are achieved [11]. 

GENERALISED EQUIVALENT ELECTRICAL CIRCUIT OF A 
CAPACITIVE SENSOR 
The equivalent electrical circuit of capacitive sensors can of-
ten be displayed by a passive three-terminal circuit as in fig.1, 
where C = C(X, P1, P2, …, Pl) shows the capacity which depends 
on the input quantity X and influence factors P1, P2, …, Pl such 
as temperature, humidity, environment, etc. [1]. The complex 
conductivities YS, YS1, YS2, are related to the transfer process X 
→ C and the design features of the capacitive sensor. 
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Figure 1: three-terminal equivalent electrical circuit of ca-
pacitive sensors 
When YS1 and YS2 have no bearing to the definition of X 
(parasitic conductivities), their influence can be suspended 
through an ‘active shield’ or by using a measuring transducer 
with low input impedance [1]. In this way, and in all cases 
where YS1 → 0 and YS2 → 0, the three-terminal model can be 
simplified and transformed into a two-terminal one. 

The nature of YS is a major factor in the choice of a measuring 
transducer. Typically, when the order of the electrical circuit 
between terminals 1 and 2 is higher, a transducer with a more 
complex structure should be used. Therefore, an equivalent 
circuit of the sensor is preferred that can achieve the required 
accuracy of presentation at the lowest possible order of con-
ductivity Y12 = jωC + YS.

The most common and popular models of capacitive sen-
sors are: 

- C-model. Here YS = 0 and Y12 = jωC. The model has one 
parameter; 

- CG-model with YS = G and Y12 = jωC + G in which G = G(X, 
P1, P2, …, Pl). The model has two parameters; 

- CCPE-model (fig.2) with parallel connected capacitor C and 
constant phase element (CPE), with complex conductivity YS 
= YCPE = A(jω)α, where 0 ≤ α < 1. If α = const Y12 depends on 
two parameters C = C(X, P1, P2, …, Pl) and A = A(X, P1, P2, …, 
Pl), and is described as follows 

Y12 = jωC + A(jω)α.     (1) 
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Figure 2: two-terminal equivalent circuit 
The CG-model is the most popular one and it is normally 
used to take into account the conductivity and dielectric loss-
es of the medium in which the electromagnetic field created 
by the electrodes is propagated. However, the CCPE-model 
has a lot of advantages [6, 7]: 

- The CCPE-model is a generalisation of the other two mod-
els. When A = 0, the CCPE-model becomes a C-model, and 
when α = 0, the CCPE-model turns into a CG-model; 
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- The logarithmic plot (fig.3) of the CPE admittance is a 
straight line where απ/2 is the slope of the line and A-1/α is the 
horizontal coordinate of the location where the line crosses 
the horizontal axis. In a limited frequency interval [ω1, ω2], 
this allows for a linear approximation of complicated com-
plex conductivities connected in parallel with the measured 
capacity and thereby leads to a more precise model of the 
capacitive sensor; 

- The replacement of the CG model by a CCPE model does 
not increase the number of elements, parameters or the or-
der of conductivity Y12, so it could not complicate the trans-
ducer. 
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Figure 3: logarithmic plot of the CPE admittance 

ANALYSIS OF THE STEADY-STAY RESPONSE OF A CA-
PACITIVE MEASURING TRANSDUCER BASED ON THE 
CHARGE TRANSFER METHOD
Fig.4 displays a charge transfer differential transducer with a 
capacitive sensor presented in a three-terminal CCPE-model, 
and fig.5 shows the clocks that control switches (S1 ÷ S4). The 
steady-state response of the transducer will be analysed un-
der the following conditions: C(t) = C = const and A(t) = A = 
const [4, 5, 7].
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Figure 4: charge transfer differential transducer with a ca-
pacitive sensor presented in a three-terminal CCPE-model

Figure 5: control switches of the transducer

Representing voltage u12 of the capacitive sensor by a Fourier 
series (the potential of node 2 remains equal to zero, and ωcl 
= 2π/Tcl), it can be concluded that 

u12(t) = Esgn(sin(ωclt))  or 

u12(t) = ( )∑
∞

=
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12
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The charge transfer by currents iC and iY using (1) as well is 
 
q(t) = qC(t) + qY(t) = Cu12(t) + A-∞J1-αu12(t)  ,   (3) 

where -∞J1-α is the fractional integration operator of order (1-
α). In equation (3), it is assumed that at a moment of time 
t→∞, CPE is not charged (qY(t)│t→-∞ = 0), but this condition is 
not critical for the analysis. 

The solution of equation (3) is presented by an anti-periodic 
function [4] 

( ))sin(sgn)( tCÅtq clω= -             (4) 
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Figure 5: control switches of the transducer

Let us assume that n = 1, 2, 3, … is the number of the cycles 
when t > 0 and θTcl is the time by which the control sequence 
of switches S3 and S4 outruns the control sequence of switch-
es S1 and S2    (0 < θ < 1/2). In the interval {(n – 1 – θ).Tcl ÷ (n 
– 1/2 – θ).Tcl}, S3 is closed and the electrical charge passing 
trough capacitor C, CPE and the input of the trans-imped-
ance amplifier g will be

Δq = q((n – ½ – θ)Tcl) – q((n – 1 – θ)Tcl) = 

 = 2q((n – 1 – θ)Tcl  .            (5) 

During the rest of this period {(n – ½ – θ)Tcl ÷ (n – θ)Tcl}, the S3 
switch is open and the electrical charge passing through the 
input of the amplifier g equals zero. Therefore the average 
value of the output voltage of the amplifier (dc component) is 

Ug = –R2Iav = –R2(ωclΔq)/(2π)  ,      (6) 
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where Iav = Δq/Tcl = (ωclΔq)/(2π) is the average value of the 
output current of the amplifier. 

Likewise, for the other amplifier h 

Uh = R2Iav = R2(ωclΔq)/(2π)  ,   (7) 

and the difference U = Uh – Ug can be derived from equations 
(6) and (7) 

U = 2R2Iav = R2(ωclΔq)/π  .   (8) 

Considering equations (4)÷(8), the following can be written: 

Equations (10) and (11) present a transfer function of the ex-
amined capacitive measuring transducer (fig.4, and fig.5). 
With the use of the same method, the transfer function of 
other similar continuously operating transducers can be de-
termined. 

DEFINING THE ERROR CAUSED BY A PHASE CONSTANT 
ELEMENT 

Without a constant phase element (A = 0) and using equation 
(11), the value of C 

The conclusions drawn are [2]: 

1. The terms ωclC and ωcl
αA are respectively equal to the mag-

nitude of the complex conductivity of capacitor C and CPE at 
frequency ωcl. The error δCPE depends on the variable b. If it is 
a finite and positive b > 0: 

- the error is reduced at a higher frequency of the clocks, this 
effect being more evident at lower α values (1.41 times when 
α = 0.50 and only 1.18 times when α = 0.75); 

- the error reaches zero if the conductivities of the two ele-
ments comply with the rule ωcl

αA << ωclC and the CPE influ-
ence can be neglected. 

2. In the presence of the CPE, the error (δCPE) depends on b 
= b(θ, α). In the 0<θ≤0.25 interval, the quadrature control (θ 
= 0.25) is preferable to the classical control θ → 0, as the first 
control provides the minimum value of b = b(θ, α). According 
to equations (12) and (15): 

- b(1/4, α) = min b(θ, α) if 0 ≤ α < 1; 
- b(1/4, α) = 0 if α = 0; 
- 0 < b(1/4, α) if 0 < α < 1. 

Therefore the quadrature control allows invariant determina-
tion of C (δCPE = 0) in one of the most basic models of capaci-
tive sensors (the CG-model). In all other cases, the C capacity 
exceeds the true value and the error is positive (δCPE > 0). 

MINIMISATION OF THE ERROR CAUSED BY THE PHASE 
CONSTANT ELEMENT THROUGH CONDUCTING OVER-
LAP MEASUREMENTS 

It is possible that in the interval 0<θ≤0.25 there will be no θ to 
reduce the error to zero so the designated δCPE value will not 
be reached using quadrature control. 

Equation (11) may be used to determine capacity C:

If the voltages measured at the output of the capacitive trans-
ducer represent a non-correlated quantity with dispersion σ2, 
then in order to determine the dispersion of C using equa-
tions (13) and (21), the following can be written, respectively: 
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Dispersion σII
2 has the lowest value when |a| has the lowest 

value. The analysis of equation (19) shows that |a| reaches its 
minimum when 
θ1→0 and θ2 = 0.25        (23) 

(or vice versa θ1 = 0.25 and θ2→0) .  

Therefore charge transfer capacitive measuring transducers 
can operate with capacitive sensors represented by a frac-
tional differential model. However, the result achieved for the 
sensor capacity depends on the control of the switches. 

When operating in the interval 0<θ≤0.25, the following rec-
ommendations need to be observed: 

1. If A=0 (CPE is not present) or if the capacitance is domi-
nant (ωcl

αA<<ωclC), the recommended control is θ→0 since it 
provides the longest period of time for charge transfer from 
sensor to transducer. 

2. If A≠0 and α=0, the recommended control is θ=0.25 as the 
presence of the CPE does not influence the output voltage 
of the transducer. 

3. If A≠0 and 0<α<1, the increase in θ reduces the CPE effect 
on the output voltage. Then the quadrature control θ=0.25 is 
the most efficient solution in the interval 0<θ≤0.25. 

4. If A≠0 and 0<α<1, when quadrature control cannot pro-
vide reasonable error (caused by the CPE), the sensor capac-
ity can be determined by conducting two consecutive meas-
urements using different controls: θ→0 and θ=0.25. 

SIMULATION AND EXPERIMENTAL INVESTIGATION 
OF THE CHARGE TRANSFER CAPACITIVE MEASURING 
TRANSDUCER 
In order to evaluate the practical significance of the results 
achieved, the following data on the capacitive transducer 
from fig.4 (and fig.5) were provided: 

- nominal range of measured C0÷1000 pF; 
- clock frequency 1/Tcl = 100 kHz (ωcl = 6.2832 s-1); 
- nominal coefficient 15.04 mV/pF; 
- nominal voltage to the sensor E = 2.5 V. 
 
The values of its elements were as follows: R2 = 15,039 kΩ; C1 
= 100 nF; C2 = 10 nF. At outputs Ug and Uh, resistors R3 = 1 
kΩ were connected in series and capacitors C3 = 100 nF were 
connected in parallel. 

When Oustaloup’s approximation was applied, a Foster cir-
cuit (tabl.1 and fig.6) was synthesised (consisting of 31 resis-
tors and 30 capacitors) which modelled the CPE with an error 
less than 0.08 % [3, 5, 8].

TABLE – 1 VALUES OF THE RESISTORS AND CAPACITORS 
PRESENTED IN FIGURE 6

No R, kΩ C, pF
0 1.9974E+01 -
1 1.7148E+02 6.3234E+03
2 1.2594E+02 4.6595E+03
3 1.0200E+02 3.1132E+03
4 8.5204E+01 2.0169E+03
5 7.2117E+01 1.2896E+03
6 6.1429E+01 8.1931E+02
7 5.2495E+01 5.1885E+02

8 4.4936E+01 3.2801E+02
9 3.8501E+01 2.0718E+02
10 3.3003E+01 1.3080E+02
11 2.8298E+01 8.2552E+01
12 2.4267E+01 5.2096E+01
13 2.0812E+01 3.2873E+01
14 1.7849E+01 2.0743E+01
15 1.5309E+01 1.3088E+01
16 1.3130E+01 8.2583E+00
17 1.1261E+01 5.2109E+00
18 9.6579E+00 3.2880E+00
19 8.2827E+00 2.0748E+00
20 7.1026E+00 1.3094E+00
21 6.0897E+00 8.2646E-01
22 5.2197E+00 5.2181E-01
23 4.4714E+00 3.2964E-01
24 3.8263E+00 2.0847E-01
25 3.2678E+00 1.3210E-01
26 2.7801E+00 8.4028E-02
27 2.3474E+00 5.3856E-02
28 1.9504E+00 3.5077E-02
29 1.5579E+00 2.3765E-02
30 1.0747E+00 1.8643E-02
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Figure 6: Oustaloup’s approximation of CCPE-model
The model of the charge transfer capacitive measuring trans-
ducer in PSpice should reflect as fully as possible the condi-
tions under which equation (10) is deducted. To this end, it is 
of topmost significance to take into account the ideal nature 
of the transducer and its elements. 

In view of the limitations set by the PSpice simulator, the veri-
fication procedure was conducted using a model in which: 

- the on/off time of the analogue switch was 1 ns; 
- analogue switches with RON = 0.1 Ω and ROFF = 1.1011 Ω 

were used; 
- OPAMP PSpice models of an operational amplifier with 

open loop gain of 1.106 were used. 
 
The PSpice model of capacitive transducer thus obtained 
makes it possible to conduct simulations when parameters 
change within a wide range (clock frequency 1/Tcl = 50 ÷ 100 
kHz, α = 0÷0.75 and θ = 0.05÷0.25). 

In the cases examined, the maximum relative deviation of 
the output voltage obtained through PSpice simulation from 
those determined in accordance with (10) did not exceed 
0.04%. 

Evaluation was made of the differences between the transfer 
function of a real and an ideal capacitive measuring trans-
ducer. For this purpose, the transducer described above was 
implemented. Operational amplifiers of the LM6361 type 
and MAX4066 analogue switches were used. Combinations 
of Suntan NPO precise capacitors with nominal value of 150 
pF and uncertainty of ±0.2 pF were applied. The output volt-
age was measured using a Mastech MS8218 voltmeter with 
maximum error of 0.04%. 

As a result, a conclusion was drawn that the systematic error 
allowed did not exceed 0.49% when the experimental trans-
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fer function was replaced by a theoretically defined transfer 
function. 

While defining the capacity in the presence of a constant 
phase element through two overlap measurements, the max-
imum error after application of formula (21) did not exceed 
0.49%. 

CONCLUSIONS
A general equivalent scheme of a primary capacitive measur-
ing transducer containing a constant phase element was pre-
sented. Compared to conventional schemes, this one allows 
a wider range of capacitive sensors to be described without 
leading to an increase in the number of elements or changes 
in the model arrangement. A continuously operating charge 
transfer differential capacitive measuring transducer running 
in a steady-state mode was analysed with a constant phase 
element in the capacitive sensor. 

The additional error created by the constant phase element 
in an equivalent capacitive sensor scheme was also analysed 
. Recommendations were made concerning the application 
of the appropriate control of the measuring transducer thus 
minimising the error. 

The simulations and experiments conducted proved the sig-

nificance of the analytical results obtained. 
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