
INDIAN JOURNAL OF APPLIED RESEARCH X 143

Volume : 4 | Issue : 1 | Jan 2014 | ISSN - 2249-555XRESEARCH PAPER

A Study on Semantic Web Framework: JENA and
Protégé

Kruti Jani Dr. V.M. Chavda
Assitant Professor, SCCPGICA, Ahmedabad Principal, NPCCM, KADI

KEYWORDS Semantic web ,RDF Graph, Ontologies

ABSTRACT The Semantic Web provides a common framework that allows data to be shared and reused across applica-
tion, enterprise, and community boundaries. Jena is an open source Semantic Web framework for Java for

developing Semantic Web applications. It can be used to create and manipulate RDF graphs. Protégé is a free open source
Ontology Editor and Knowledge Based Framework. It supports modeling ontologies. Both can be used for similar tasks
with the some differences. This paper discusses comparative study of two frame work Jena and Protégé. Frameworks like
this are worth investing in, since they might play the key role in the evolution of the WWW into Semantic Web.

Computer Science

I. INTRODUCTION
The term “Semantic Web” is often used more specifi-
cally to refer to the formats and technologies that enable
it [3]. These technologies include the Resource Description
Framework (RDF), a variety of data interchange formats (e.g.
RDF/XML, N3, Turtle, N-Triples), and notations such as RDF
Schema (RDFS) and the Web Ontology Language (OWL),
all of which are intended to provide a formal description
of concepts, terms, and relationships within a given knowl-
edge domain. RDF graph can be modeled by using the Java
based framework called Jena. Jena based on Java deals with
programmatic statements. The same can be done by using
an editor- Protégé. The paper compares how the semantic
web concepts can be designed and modeled using the two
API and also states as to which API should be used while
developing the Semantic Based Web Applications for better
performance metrics.

A) JENA FRAMEWORK
Jena is a Java framework for building Semantic Web applica-
tions [1]. It provides a programmatic environment for RDF,
RDFS and OWL, SPARQL and includes a rule-based inference
engine. Jena is open source and grown out of work with the
HP Labs Semantic Web Program [5]. The Jena Framework
includes:

• A RDF API
• Reading and writing RDF in RDF/XML, N3 and N-Triples
• An OWL API
• In-memory and persistent storage
• RDQL- a query language for RDF
• SPARQL query engine

Jena is a Java API which can be used to create and manipu-
late RDF graphs. Jena has object classes to represent graphs,
resources, properties and literals. The interfaces representing
resources, properties and literals are called Resource, Prop-
erty and Literal respectively[2]. A graph is called a model and
is represented by the Model Interface [4]. To build applica-
tions exploiting the ontology, we need an API allowing us to
access and manipulate directly an ontology written in OWL
Since it is reliable, mature and offers a good compatibility
with most of the other RDFS/OWL API.

Thus Jena Classes can be used to:
• Retrieve and Parse an RDF File containing a graph or a

collection of graphs.
• Store it in memory
• Examine each triple in turn, examine one component(say,

the subject) of each triple in turn, or examine only triples
that meet specified criteria and

• Write a serialized version of a graph to a file.

An RDF Graph is stored in Jena as a “model”, and a Jena
model is created by a factory, as in:

Model m=ModelFactory.createDefaultModel();

Once a model has been defined, Jena can populate it by
reading data from files, backend databases, etc. in various
formats and once it has been populated, Jena can perform
set operations on pairs of populated models and /or search
models for specific values or combinations (patterns) of val-
ues.

B) RESOURCE DESCRIPTION FRAMEWORK (RDF)
The Resource Description Framework (RDF) is a standard
(technically a W3C Recommendation) for describing resourc-
es [5]. A Resource is anything we can identify Every Resource
has a URI, a Universal Resource Identifier[2]. A URI can be
a URL or some other kind of unique identifier. RDF is best
thought of in the form of node and arc diagrams. Each arc in
an RDF Model is called a statement. Each parts:

• the subject is the resource from which the arc leaves
• the predicate is the property that labels the arc
• the object is the resource or literal pointed to by the arc

A statement is sometimes called a triple, because of its three
parts.

A simple vcard might look like this in RDF:

Fig -1 simple vcard in rdf with more details of the person
node[5]

The resource, John Smith, is shown as an elipse and is identi-
fied by a Uniform Resource Identifier (URI) [1], in this case
“http://.../JohnSmith”. Resources have properties. In these
examples the sort of properties that would appear on John
Smith’s business card. Figure 1 shows only one property,
John Smith’s full name. Properties are usually represented in
this qname form when written as RDF XML and it is a conven-
ient shorthand for representing them in diagrams and in text.

144 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 4 | Issue : 1 | Jan 2014 | ISSN - 2249-555XRESEARCH PAPER

Strictly, however, properties are identified by a URI. Each
property has a value. In this case the value is a literal, which
for now we can think of as a strings of characters. Literals are
shown in rectangles. Jena is a Java API which can be used
to create and manipulate RDF graphs like this one. Jena has
object classes to represent graphs, resources, properties and
literals. The interfaces representing resources, properties and
literals are called Resource, Property and Literal respectively.
In Jena, a graph is called a model and is represented by the
Model interface.

The code to create this graph, or model, is simple:

// some definitions

static String personURI = “http://somewhere/JohnSmith”;

static String fullName = “John Smith”;

// create an empty Model

Model model = ModelFactory.createDefaultModel();

// create the resource

Resource johnSmith = model.createResource(personURI);

// add the property

johnSmith.addProperty(VCARD.FN, fullName);

The John Smith resource is then created and a property
added to it. The property is provided by a “constant” class
VCARD which holds objects representing all the definitions in
the VCARD schema. Jena provides constant classes for other
well known schemas, such as RDF and RDF schema them-
selves, Dublin Core and DAML.

The code to create the resource and add the property, can be
more compactly written in a cascading style:

Resource johnSmith = model.createResource(personURI)
.addProperty(VCARD.FN, fullName);

Another example of representing different parts of John
Smith’s name can be:

Fig. 2: simple vcard in rdf with more details of the person
node[5]

The Jena code to construct this example, is again very sim-
ple. First some declarations and the creation of the empty
model.

// some definitions

String personURI = “http://somewhere/JohnSmith”;

String givenName = “John”;

String familyName = “Smith”;

String fullName = givenName + “ “ + familyName;

// create an empty Model

Model model = ModelFactory.createDefaultModel();

// create the resource

// and add the properties cascading style

Resource johnSmith

= model.createResource(personURI)

.addProperty(VCARD.FN, fullName)

.addProperty(VCARD.N,

model.createResource()

.addProperty(VCARD.Given, givenName)

.addProperty(VCARD.Family, familyName));

Jena has methods for reading and writing RDF as XML. These
can be used to save an RDF model to a file and later read it
back in again. The key RDF package for the application de-
veloper is com.hp.hpl.jena.rdf.model. The API has been de-
fined in terms of interfaces so that application code can work
with different implementations without change. This package
contains interfaces for representing models, resources, prop-
erties, literals, statements and all the other key concepts of
RDF, and a ModelFactory for creating models. So that ap-
plication code remains independent of the implementation,
it is best if it uses interfaces wherever possible, not specific
class implementations.

II. PROTEGE
Protégé is a free open source Ontology Editor and Knowl-
edge Based Framework developed and published by Stan-
ford University[6]. It is published under the terms of Mozilla
Public License[7]. Protégé is a flexible, configurable platform
for the development of arbitrary model-driven applications
and components. Protégé has an open architecture that al-
lows programmers to integrate plug-ins, which can appear as
separate tabs, specific user interface components (widgets),
or perform any other task on the current model. The Protégé-
OWL editor provides many editing and browsing facilities for
OWL models, and therefore can serve as an attractive start-
ing point for rapid application development. Developers can
initially wrap their components into a Protégé tab widget and
later extract them to distribute them as part of a stand-alone
application.

The Protégé-OWL editor enables users to:

• Load and save OWL and RDF ontologies.
• Edit and visualize classes, properties, and SWRL (Seman-

tic Web Rule Language) rules.
• Define logical class characteristics as OWL expressions.
• Execute reasoners such as description logic classifiers.
• Edit OWL individuals for Semantic Web markup.

The Protégé API not only has a non-visual model part, but
also comes with comprehensive support for user interface
programming. There are several convenient classes and util-
ity methods that help programmers develop interactive user
interfaces quickly and with uniform look-and-feels that match
the rest of the Protégé family of tools.

One of the foundations of UI programming with Protégé is

INDIAN JOURNAL OF APPLIED RESEARCH X 145

Volume : 4 | Issue : 1 | Jan 2014 | ISSN - 2249-555XRESEARCH PAPER

REFERENCE [1] "W3C Semantic Web Frequently Asked Questions". W3C. http://www.w3.org/2001/sw/SW-FAQ. Retrieved March 13, 2008. | [2] Berners-
Lee, Tim; James Hendler and Ora Lassila (May 17, 2001). "The Semantic Web". Scientific American Magazine. http://www.sciam.com/article.

cfm?id=the-semanticweb& print=true. Retrieved March 26, 2008. | [3] Herman, Ivan (March 12, 2008). "W3C Semantic Web Activity". W3C. http://www.w3.org/2001/
sw/. Retrieved March 13, 2008. | [4]JENAhttp://jena.sourceforge.net/tutorial/RDF_API/index.html. | [5]http://jena.sourceforge.net/tutorial/RDF_API/ | [6] Chaoqing Lv,
Takashi Kobayashi, Kiyoshi Agusa, Kun Wu, Qing Zhu | Matthew Horridge,Holger Knublauch, Alan Rector, Robert Stevens, Chris Wroe: A Practical Guide To Building
OWL Ontologies Using The Protégé- OWL | [7]Tutorial:http://protege.stanford.edu/conference/2005/slides/T2_OWLTutorialI |

the event mechanism, which allows programmers to react
cleanly on changes[6].

• Protégé is a free, open-source platform to construct do-
main models and knowledge based applications with on-
tologies.

• Ontologies range from taxonomies, classifications, data-
base schemas to fully axiomatized theories.

• Ontologies are now central to many applications such as
scientific knowledge portals, information management
and integration systems, electronic commerce and web
services.

There are two main ways of modeling ontologies [7]:
• Frame-based
• OWL

Each of them have its own user interface.
• Protégé Frames Editor: enables users to build and popu-

late ontologies that are frame-based, in accordance with
OKBC (Open Knowledge Base Connectivity Protocol).

	 • Classes
	 • Slots for properties and relationships
	 • Instances for class

• Protégé OWL Editor: enables users to build ontology for
the Semantic Web, in particular to OWL

	 • Classes
	 • Properties
	 • Instances
	 • Reasoning

III. DIFFERENCE BETWEEN JENA AND PROTÉGÉ
Jena is a general RDF/RDFS framework. Thus Jena lacks spe-

cific primitives for OWL-based applications. It is the oppo-
site with the Protégé- OWL API which is dedicated to OWL
manipulation and provides most functions needed to exploit
OWL ontology. This results in a faster and simpler program-
ming. The Protégé-OWL API is the final choice for the pro-
gramming needs. It is worth noting that these API being
Java-based, this implies at least the core of the applications
to be coded in Java.

IV. CONCLUSION
Both are APIs and can be used for similar tasks with the only
main difference that Protégé-OWL is based on a much older
framed-based API which predates OWL and RDF. Therefore
Protégé had to do many design compromise which was
found inconvenient. Jena on the other hand has been de-
signed for RDF and OWL from the start and is optimized for
handling triples, queries, etc. The Protégé-OWL used Jena
for parsing and provides a Jena “view” (implementation of
the Graph interface) so that some Jena services can be ex-
ploited for Protége. It can be easy to create an ontology file
with Protégé and read that into a Jena Model and then pro-
cess it as required. The Choice of which API to used should
be determined by two factors as given below:

• Does the API offer a set of programming abstractions
that can be used comfortably to implement the user re-
quirements.

• Is the API actively supported and bug fixed in case the
standards changes.

