RESEARCH PAPER	Agriculture	Volume : 4 Issue : 1 Jan 2014 ISSN - 2249-555X				
Stal Of Appling Public Report	Efficacy of Selected Insecticides at Different Location Against Pod Borer (<i>Etiella zincknella</i> Tr.) on Field Pea (<i>Pisum sativum</i> L.)					
KEYWORDS	Insecticides, pod borer, Field pea, Etiella zincknella Tr.					
		Jitendra Kumar Singh				
Prave	en Kesharwani	Jitendra Kumar Singh				
Dayal Fertilizers G	en Kesharwanı roup, Partapur, Meerut, Uttar adesh 250103	Jitendra Kumar Singh Dayal Fertilizers Group, Partapur, Meerut, Uttar Pradesh 250103				
Dayal Fertilizers G Pra	roup, Partapur, Meerut, Uttar	Dayal Fertilizers Group, Partapur, Meerut, Uttar				
Dayal Fertilizers G Pra Abh Department of Plant Institute of Agricult	roup, Partapur, Meerut, Uttar adesh 250103	Dayal Fertilizers Group, Partapur, Meerut, Uttar Pradesh 250103				

pea pod borer (Etiella zincknella Tr.) in the experimental field of Department of Plant Protection, Sam Higginbottom Institute of Agriculture, Technology and Sciences (SHIATS), Allahabad in Rabi season of 2011-2012 and Dayal Fertilizers Pvt Ltd. Partapur, Meerut in Rabi season of 2012 – 2013. Seven treatments including control with three replications were taken up using RBD. Foliar spray of insecticides viz. malathion @ 0.05%, cabaryl @ 0.15%, chlorpyriphos @ 0.05%, cypermethrin @ 0.006%, deltamethrin @ 0.002, quinalophos @ 0.05% were given at an interval of 3, 7 and 14 days while check plots were sprayed with water. Chlorpyriphos @ 0.05% proved superior against the larval population of pea pod borer as compared to other treatments.

INTRODUCATION:

Pea (Pisum sativum L.) is cultivated as an important vegetable as well as pulse crop throughout the world. It can be grown around the year under variable climatic conditions (Singh, 2007). Field pea originated in Europe and Western Asia and is grown throughout the world as a cool season crop. The crop is attacked by many insect-pests, among which pea pod borer (Etilla zinckenella Tr.) and stemfly (Melanogromyza phascoli) are serious pest in Uttar Pradesh. **Bijjur** and Verma (1997) reported 57 species of insects attacking pea crop with an annual monetary loss of 540 million Indian Rupees. Pea pod borer (Etilla zinckenella Tr.) is a major pest of field pea causing as high as 50.9% pod infestation with 77.64% seed damage resulting in 23.9% loss in the grain vield. Yadav and Chauhan (2000) observed that Etilla zinckenella Tr. caused 3.5% to 30.8% pod damage in pea crop in Uttar Pradesh alone. It is distributed throughout India with particular reference to Uttar Pradesh, Bihar, Madhya Pradesh and Punjab. The damage is caused by the larva (Mathur and Upadhyay, 2006).

MATERIALS AND METHODS:

The trial was laid out in randomized block design (RBD) with three replications and seven treatments including check in the experimental field of Department of Plant Protection, Sam Higginbottom Institute of Agriculture, Technology and Sciences (SHIATS), Allahabad in Rabi season of 2011-2012 and Dayal Fertilizers Pvt Ltd. Partapur, Meerut in Rabi season of 2012 – 2013. Each replication consisted of 21 plots of $2 \times 1m$ each. The pea crop cv. "Rachna" was sown in November with a spacing of 30 × 10 cm. Fertilizers NPK (20:20:20 kg/ha) were applied as per recommended dose. The plots were irrigated twice at 22 and 57 days after sowing (DAS). Foliar spray of six insecticides viz. malathion @ 0.05%, cabaryl @ 0.15%, chlorpyriphos @ 0.05%, cypermethrin @0.006%, Deltamethrin @ 0.002% and quinalophos @ 0.05% as per treatment at the onset of larva infestation. The observations on the larval population were made one day before and 3, 7, and 14 days after spray from 5 randomly selected plants of each plot. The data collected was statistically analyzed.

RESULTS AND DISCUSSION:

From the result presented in tables 1,2, and 3 it is evident that there is no significant differences among the treatments including control in respect of larval population during 2012 and 2013.

After spraying the data on surviving larval population (Table 1) indicated that the differences in larva population of pod borer at 3, 7 and 14 DAS were significant. All the insecticides recorded significantly lower larval population than untreated control. The treatment chlorpyriphos 20 EC @ 0.05% ml/l significantly minimized the larval population at 3^{rd} , 7^{th} and 14^{th} DAS. The mean larval population was observed in chlorpyriphos 20 EC @ 0.05% (3.6, 1.8 & 0.50 larva/5 plants), followed by cypermethrin 25 EC @ 0.006% (3.8, 2.2 & 1.3 larva/5 plants), deltamethrin 2.8 EC @ 0.002 (4.2, 2.9 & 1.4 larva/5 plants), cabaryl 85WP @ 0.15% (4.9, 3.9 & 2.5 larva/5 plants), malathion 50 WP (5.1, 4.3 & 3.0 larva/5 plants).

Table1

Effect of	insecticidal sprays on larval population of	pea
pod borer	r (2011-2012)	

Treatment	Con (%)	*Mean of larval population 1 day be- fore spray	*Mean of larval popu- lation after spray		
			3 day	7 day	14 day
Malathion	0.05	5.5	5.1	4.3	3.0
Cabarly	0.15	5.4	4.9	3.9	2.5
Chloropyriphos	0.05	5.7	3.7	1.9	0.5
Cypermethrin	0.006	5.2	3.9	2.2	1.1
Deltamethrin	0.002	5.1	4.3	2.9	1.4
Quinalphos	0.05	4.7	4.9	3.7	2.1
Control		5.3	6.5	8.5	10.5

RESEARCH PAPER

CD (P=0.05)	0.78	0.54	0.64	0.39
S.Ed±	0.36	0.25	0.3	0.18
CV(%)	8.11	6.36	9.2	7.2
Result	NS	S	S	S

*Mean of 3 replication and 5 plants

CD – Critical difference; CV – Coefficient of variation (%);

During 2012-2013 (Table 2) all the insecticides recorded significantly lower larval population than untreated control. The treatment chlorpyriphos 20 EC @ 0.05% significantly minimized the larval population at 3rd, 7th and 14th DAS. The mean larval population was observed in chlorpyriphos (2.3, 1.4 & 0.3 larva/5 plants), followed by cypermethrin (2.9, 1.6 & 0.9 larva/5 plants), Deltamethrin (3.5, 2.3 & 1.2 larva/5 plants), quinalophos (4.3, 3.3 & 2.0 larva/5 plants), cabaryl (4.4, 3.5 & 3 larva/5 plants), malathion 4.8, 4.4 & 4.1 larva/5 plants).

Table 2 Effect of insecticidal sprays on larval population of pea pod borer (2012-2013)

Treatment	Con (%)	*Mean of lar- val popula- tion 1 day before spray	*Mean of larval population after spray		
			3 day	7 day	14 day
Malathion	0.05	5.40	4.8	4.4	4.1
Cabarly	0.15	5.20	4.4	3.5	3.0
Chloropyriphos	0.05	4.80	2.3	1.4	0.3
Cypermethrin	0.006	5.07	2.9	1.6	0.9
Deltamethrin	0.002	4.60	3.5	2.3	1.2
Quinalphos	0.05	4.73	4.3	3.3	2.0
control		5.3	6.8	9.2	10.8
CD (P=0.05)		0.76	0.63	0.75	0.56
S.Ed±		0.35	0.26	0.35	0.26
CV(%)		8.53	8.57	11.5	10.0
Result		NS	S	S	S

*Mean of 3 replication and 5 plants

CD – Critical difference; CV – Coefficient of variation (%)

Volume : 4 | Issue : 1 | Jan 2014 | ISSN - 2249-555X

On averaging the two year data (Table 3), it was observed that 3, 7 and 14 DAS. The treatment chlorpyriphos 20 EC @ 0.05% significantly minimized the larval population at 3rd, 7th and 14th DAS. The mean of two year larval population was observed in chlorpyriphos (3, 1.6 & 0.4), was better than all the other treatments followed by cypermethrin, Deltamethrin, quinalophos, cabaryl, malathion as against untreated control of (6.7, 8.8 & 10.7). These findings are in agreement with **Sinha and Sharma (2010), Balasubramanian et al. (2001), Ujagir (1999),** and **Bijjur and Verma (1997).** They also reported that chlorpyriphos was the most effective insecticide for minimizing the larval population on pea pod borer.

Table 3

Effect of	insecticidal sprays on larval population	of pea
pod bore	r (Averages of 2011-2012 and 2012-2013	3)

Treatment	Con (%)	*Mean of larval popu- lation 1 day before spray	*Mean of larval popu- lation after spray			
			3 day	7 day	14 day	
Malathion	0.05	5.5	5.0	4.4	3.5	
Cabarly	0.15	5.3	4.7	3.7	2.8	
Chloropyriphos	0.05	5.3	3.0	1.6	0.4	
Cypermethrin	0.006	5.1	3.4	1.9	1.0	
Deltamethrin	0.002	4.9	3.9	2.6	1.3	
Quinalphos	0.05	5.2	4.6	3.5	2.1	
Control		5.2	6.7	8.9	10.7	
CD (P=0.05)		0.69	0.46	0.51	0.29	
S.Ed±		0.32	0.21	0.24	0.13	
CV(%)		8.53	8.57	7.6	5.3	
Result		NS	S	S	S	

*Mean of 2 Averages data yerar (3 replication and 5 plants)

CD – Critical difference; CV – Coefficient of variation (%)

REFERENCE Balasubramanian, G., Babhu P.C.S. Babu and Manjula T.R. (2001). Efficacy of spicturin against pod borer on chickpea. Madras. Agri. Univ. J. Res. 10: 324-328. | Bijjur, Sanjay and Verma shashi (1997). Persistence and efficacy of insecticides against pest complex of pea crop. Pest.Res.J. 9 (1): 25-31. | Mathur, Y.K. and Upadhyay K.D. (2006). A Text Book of Entomology. Rama Publications, New Delhi pp189-191. | Singh, Dhanbir (2007). Management of pea diseases with fungicides. J. Mycol. PI. Pathol. 37(3): 442-443 | Sinha, S.R. and Sharma R.K. (2010). effect of insecticides on insect of brinijal. Ann. PI. Protec. Sci. 18: (1) 82-85. | Ujagir, Ram (1999). Field efficacy of insecticides against pod borer complex in early pigenonpea, Cajanus cajan L. millsp. At pantnagar, norther India. Ann. PI. Protec. Sci. 7 (1): 19-25. | Yadav, J.L. and Chauhan R. (2000). Evaluation of insecticides against larval population of Etiella zinckenella Tr. on field pea. Intern. J. Crop Agric. 18(2):169-172. |