
320  X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 4 | Issue : 1  | Jan 2014 | ISSN - 2249-555XRESEARCH PAPER Engineering

Requirement Management Best Practices

Dr. Kirti Mathur
International Institute of Professional Studies, DAVV, Indore. 102,  Jaora Compound, Indore

KEYWORDS Requirement, Specification.

ABSTRACT Requirements play an indispensable role in the development of software. Due to unrealistic, unachievable 
and incomplete requirements, consequence are the software developed from these is not robust and result 

into poor performance or failures, sometimes with critical effect on the environment. This paper presents the in- depth study 
of requirement engineering concepts, hindrances and proposes best practices to tackle with these situations.

1. Introduction 
Requirements engineering is primarily a communication ac-
tivity. Miscommunication problems can occur early, if project 
participants have ambiguity in understanding the “require-
ments”. As requirements are further converted into specifica-
tions for  implementation, describing how the system should 
behave. There may be some constraints on the development 
process of the system. A project addresses basically three 
levels of requirements, which come from different sources 
at different stages like business requirements, functional re-
quirements and non-functional requirements.

Lack of consensus over the entire software requirements can 
lead to confusion. The domain of requirements engineering 
can be divided into:
(a)  Requirement spawning 
(b)  SRS management

1.1 Requirement spawning
The deliverable from requirements spawning is a baseline 
that constitutes an agreement among project stakeholders 
of the new product’s capabilities. It is further subdivided into 
elicitation, analysis, specification, and verification.

1.1.1 Key Practices of Elicitation
Software product development must begin after gathering 
the different requirements from all stakeholders. The critical 
practices for elicitation are:

Practice Description

1.

Illustrating 
the Product’s 
Business 
Requirements

Documentation of product scope, 
limitations and vision statement.

2. Achieving user 
feedback

By:
-Developing scenarios and use cases
-Resolving conflicts of proposed 
requirements
-Defining implementation priorities
-Specifying quality attributes
-Inspecting requirements documents
-Evaluating and prioritizing 
enhancement and change requests.

3.

Emphasize 
on User Tasks 
through use-
case

Use case helps analyst:
-derive functional requirements.  
-Shift requirements discussions from 
the traditional focus on features/ 
functionality to what the user will do 
with the product. 
-identify exceptional conditions 
the system must handle instead of 
expected system behaviours. 

4. specify Quality 
Attributes[

-like how well the system will 
perform its functions (non-functional 
requirement). 

Table1: Elicitation practices

1.1.2 Key Practices for Analysis
Requirements analysis includes:
(i) Decomposing high-level requirements into functional re-

quirements.
(ii) Constructing graphical requirements models, and proto-

types. 

Analysis models and prototypes provide alternative views of 
the requirements, which often reveal errors and conflicts that 
are hard to spot in a textual SRS.  The practice can be:

Define Priority Projects having resource limitations must set 
the priorities of the requested requirements. This helps the 
project manager plan for staged releases, make trade-off de-
cisions, like requests for adding more functionality. A better 
approach is to base priorities on some objective analysis of 
how to deliver the maximum product value within the sched-
ule, budget, and staff constraints, by classifying requirements 
into “must” and “want”. Idea should be provide the greatest 
value at the lowest risk and cost. 

1.1.3 Key Practices of Specification
The most essential specification key practice is to write down 
the requirements in some accepted, structured format as 
to gather and analyze them. The objective of requirements 
spawning is to communicate a shared understanding of the 
new product among all project stakeholders. Traditionally, it 
is captured in the SRS written in natural language, along with 
appropriate analysis models.  

Use Tools for Storing to store requirements in a multi-user 
database. These tools allow manipulation of database con-
tents, importing, exporting requirements, and connecting re-
quirements to objects stored in testing, design, and project 
management. Define attributes for each requirement, such 
as its version number, author, status, origin or rationale, allo-
cated release and priority. Traceability links between individ-
ual requirements and other system elements help One evalu-
ate the impact of changing or deleting a requirement. Web 
access permits real-time sharing of database updates with 
members of geographically distributed teams. Several widely 
used requirements management tools are Caliber, DOORS, 
Requisite Pro, RTM Workshop, Vital Link etc. [4] , these give 
one more control over the requirements collection. 

1.1.4 Key Practices of Verification 
Verification involves evaluating the correctness and com-
pleteness of the requirements, to ensure that a system built 



INDIAN JOURNAL OF APPLIED RESEARCH  X 321 

Volume : 4 | Issue : 1  | Jan 2014 | ISSN - 2249-555XRESEARCH PAPER

will satisfy the users’ needs. Also ensures that the require-
ments provide an adequate basis to proceed with design, 
construction, and testing. This is achieved by:

Inspecting the SRS to fix defects later in the development 
process, formal inspection of requirements is perhaps the 
best software quality practice available. It reveals many de-
fects, incurs low cost. Combining formal inspection with in-
cremental informal [11] requirements reviews provides qual-
ity product.

1.2 SRS Management 
Requirements management activities includes, evaluating the 
impact of proposed changes, tracing individual requirements 
to downstream work products, and tracking its status during 
development. One can monitor project status by knowing 
what percentage of the allocated requirements have been 
implemented & verified, just implemented, or not yet fully 
implemented. But the idea of requirement management is:

1.2.1 Manage Change requests 
Every project must establish a change control board of 
the decision-makers who approve or reject each proposed 
change. Every project should have a documented process 
describing, how a proposed change will be submitted, 
evaluated, decided, and incorporated into the requirements 
baseline. One can support the change control process with a 
problem- or issue-tracking tool, but a tool is not a substitute 
for a documented process. 

2. Engineering Practices 
Process changes should be motivated by schedule slippages, 
overtime, rework, high repair costs, and customer dissatis-
faction. The improvement-driven organization will examine 
the sources of such pain and avoid repeating the same prob-
lems. The problems encountered while implementing the im-
proved requirement practices and their solutions are :

Ø All terminology used in requirements engineering must 
lie close to reality of the environment for which a machine 
is to be built.

Practice is give meaning to terms such that it lies close to real 
world and environment, by providing an informal explanation 
of it, which is clear and precise, written as “designations” and 
maintained as an essential part of the requirements docu-
mentation. The association between the physical quantities 
of interest and their mathematical representations must be 
carefully defined, and avoid the use of prose in specifications 
causing ambiguity.

It is not necessary to describe the machine to be built. Rath-
er, the environment is described in two ways: as it would be 
without or in spite of the machine, and as we hope it will 
become because of the machine.

Practice is, Requirements must describe what the desired 
machine does, not how it does. More precisely, requirements 
are supposed to describe the interface between the environ-
ment and the machine, and not the machine.

Ø Assuming that formal descriptions focus on actions, 
Identify which actions are controlled by the environment, 
which are controlled by the machine, and which actions 
of the environment are shared with the machine. All types 
of actions are relevant to requirements engineering, and 
might need to be described or constrained formally. If 
formal descriptions focus on states, then the same basic 
principles apply in a slightly different form.

Practice is all statements made in the course of requirements 
engineering are statements about the environment. The 
primary distinction necessary for requirements engineering 
is captured by two grammatical moods. Statements in the 
“indicative” mood describe the environment as it is in the 

absence of the machine or regardless of the actions of the 
machine; these statements are often called “assumptions” or 
“domain knowledge.”

Statements in the optative mood describe the environment. 
Optative statements are “requirements” and describe the 
environment.

Ø  The primary role of domain knowledge in requirements 
engineering is in supporting refinement of requirements 
to implementable specifications. Correct specifications, 
with appropriate domain knowledge, imply the satisfac-
tion of the requirements.

Practice is since requirements fully satisfy a customer. A 
specification is always implementable. The gap between re-
quirements and specifications is called refinement of require-
ments. Specification refinement is concerned with removing 
the features of a specification that are not executable by the 
target implementation platform, and replacing them with 
features that are executable on that platform. Requirements 
refinement is concerned with identifying the aspects of a re-
quirement that cannot be guaranteed by a computer alone, 
and replacing them until are fully implementable.

It has also long been recognized that domain knowledge 
plays an important role in requirements engineering, A 
specification that is implementable in principle may not be 
implementable in practice. Some requirements are already 
implementable, but some are not directly implementable 
reasons being: 

Reasons Illustration

1. Environmental 
Constraints

Must be verified by a demonstration 
specifying properties, with domain 
knowledge, guarantying the 
satisfaction of the requirement.

2. Not-shareable 
information

Like in the banking environment, 
there is a requirement “a withdrawal 
request, provided that the 
requested amount does not exceed 
the current balance”. The only 
shared phenomena in this example 
are the action types deposit, 
withdrawal-request, and withdrawal-
payment. Since the balance 
state component exists in the 
environment and is not shared with 
the machine, the machine cannot 
directly implement this requirement.

3. Forward 
referencing

Requirements stated in terms of 
future, are satisfied with the help of 
domain knowledge, by relating the 
future to the past.

Table2: Non implementation reasons. 

Other aspects Emphasis on various agents within the en-
vironment is the recent trend in the study of requirements 
refinement. These agents often cooperate with the machine 
and satisfy unrefined requirements. Agent-centered refine-
ment is a special case of refinement, where agent in the 
environment is indeed domain knowledge, but not all do-
main knowledge takes the form of agent descriptions. Some 
domain knowledge captures static relationships in the envi-
ronment. For example, “indirect access” is a requirements 
refinement in which the machine needs some information 
it does not have direct access to; an agent in the environ-
ment gets it and communicates it to the machine. This is the 
only strategy, to deal with unshared information. Other re-
quirement type called “soft” is vague and imprecise, such 
as requirements for a system to be “secure,” “reliable,” or 
“user-friendly.” 



322  X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 4 | Issue : 1  | Jan 2014 | ISSN - 2249-555XRESEARCH PAPER

REFERENCE 1. Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon Reese.( 2010) Requirements specification for process-control 
systems. IEEE Transactions on Software Engineering XX(9):684-707. | 2. Michael Jackson and Pamela Zave (2011) Four Dark Corners of 

Requirement Engineering, Proceedings of the IEEE LXVIII(9):1060-1076,. | 3. Stanley B. Zdonik and David Maier, eds. (2010) Systems, pages 37-46. Morgan Kaufmann. 
| 4. Lamport .L. (2010) A simple approach to specifying concurrent systems, Communications of the ACM XXXII(1). | 5. Lehman. M. M. (2010) Programs, life cycles, 
and laws of software evolution. Proceedings of the IEEE LXVIII(9):1060-1076. | 6. Barbara H. Liskov and Stephen N. Z. (2008). Specification techniques for data 
abstractions, IEEE Transactions on Software Engineering I (1):7-19. | 7. Setrag N. Khoshafian and George P. Copeland. (2011). Object identity, In Readings in Object-
Oriented Database. | 8. David L. P. and Paul C. Clements (2006). A rational design process: How and why to fake it. IEEE Transactions on Software Engineering XII 
(2):251-257. | 9. David L. P. and Madey. J. (2005), Functional documentation for computer systems engineering, Science of Computer Programming XXV: 41-61.. | 
10. Michael Spivey. J. (2002) Specifying a real-time kernel, IEEE Software VII (5):21-28. | 11. Michael Spivey. J. (2002) The Z Notation: A Reference Manual, Second 
Edition. Prentice-Hall . | 12. Jeannette M. Wing.( 2001) A specifier’s introduction to formal methods. IEEE Computer XXIII (9):8-24. | 13. Auyang S (2004) Engineering: 
an endless frontier. Harvard University Press, Cambridge. | 14. Brooks F (1996) The computer scientist as toolsmith II.Commun ACM 39(3):61–68. | 15. Bush D (2005) 
Modelling support for early identification of safety requirements: a preliminary investigation. In: Proceedings RHAS’2005 workshop, 13th international IEEE conference 
on requirements engineering, Paris. | 16. Cross. N (1994) Engineering design methods: strategies for product design, 2nd edn., Wiley Chichester. | 17. Cross. N (2001) 
Design cognition: results from protocol and other empirical studies of design activity. In: Eastman C, McCracken.

3. Conclusion
If the above explained practices are followed to perfection, 
then requirements engineering, in the real sense, will be 
complete. We are guaranteed that the specification will be 
implementable without re-work to any additional information 
and the requirements would be satisfactory and implementa-
ble.


