

$Wgr\alpha$ -I-Closed Sets in Ideal Topological Spaces

KEYWORDS wgra-I-closed sets, wgra-I-open sets.	
C.Janaki	A.Jayalakshmi
L.R.G.Govt.Arts.College for Women, Tirupur, TN,India.	Sri Krishna College of Engineering and Technology, Coimbatore, TN,India.

ABSTRACT In this paper, we introduce and study the properties of wgrα-I-closed sets in ideal topological spaces. Their relationships with other existing generalized closed sets in topological and ideal topological spaces are established.

1. Introduction

In 1990, Jankovic and Hamlett investigated the applications of topological ideals[5].In 1999, Dontchev et al. studied the notion of generalized closed sets in ideal topological spaces called Ig-closed sets [3]. Navaneethakrishnan and joseph [10] further investigated and characterized Ig-closed sets and Ig-open sets by the use of local functions. In this paper, we define and characterize wgra-1-closed sets and wgra-1-open sets.

2. Preliminaries

An ideal I on a topological space (X,τ) is non-empty collection of subsets of X which satisfies the following properties. (1) $A \in I$ and $B \subseteq A$ implies $B \in I$, (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological spaces is a topological space (X,τ) with an ideal I on X and is denoted by (X,τ,I) . For a subset $A \subseteq X, A^*(I,\tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau(X,x) \text{ is called the local}$ function of A with respect to I and τ } [7]. We simply write A^* in case there is no chance for confusion. A kuratowski closure operator $cl^*(I,\tau)$ called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*[14]$. If $A \subseteq X$, cl(A), int(A) will respectively, denote the closure and interior of A in (X,τ) .

Definition 2.1.

A subset A of a space (X, τ) is called

1. regular open [13] if A= int(cl(A)).

2. regular α -open [13] if there is a regular open set U such that $U \subset A \subset \alpha cl(U)$.

α-open[4] if A⊆int(cl(int(A)).

4. semi-open[13] if A⊆cl(int(A)).

Definition: 2.2

A subset A of (X, t) is said to be

1. g-closed [9], if $cl(A)\subseteq U$, whenever $A\subseteq U$ and U is open in (X,τ) .

2. wgra-closed[6], if cl(int(A)) \subseteq U, whenever A \subseteq U and U is regular α -open in (X, τ).

3. ω -closed[13], if cl(A) \subseteq U, whenever A \subseteq U and U is semi-open in (X, τ).

4. rga-closed[13], if α cl(A) \subseteq U, whenever A \subseteq U and U is regular α -open in (X, τ).

5. swg-closed[2], if cl(int(A)) \subseteq U, whenever A \subseteq U and U is semi-open in (X, τ).

Definition: 2.3

A subset A of (X, t, I) is said to be

1. α-I-closed [1], if cl(int^{*}(cl(A)))⊆A.

3. Irg-closed [11], if $A^* \subseteq U$, whenever $A \subseteq U$ and U is regular-open in (X, τ) .

4. $I_{\hat{\omega}}$ -closed [8], if $A^* \subseteq U$, whenever $A \subseteq U$ and U is $\hat{\omega}$ -open in (X, τ) .

5. *-closed[5], if $A^* \subseteq A$.

6. I-open[5], if A⊆int(A*).

7. I-R closed[1], if A=cl*(int(A)).

rps-I-closed[12], if spIcl(A)⊆U, whenever A⊆U and U is a rg-I-open in (X,τ).

3. wgra-I-closed sets.

Definition: 3.1

A subset A of an ideal space (X,τ,I) is said to be wgr α -I-closed if $cl^*(int(A))\subseteq U$ whenever $A\subseteq U$ and U is regular α -open.

Definition: 3.2

A subset A of an ideal space (X, t, I) is said to be wgra-I-open if X-A is wgra-I-closed.

Theorem: 3.3

1. Every closed set is wgra-I-closed.

2. Every α-closed set is wgrα-I-closed.

354 ↔ INDIAN JOURNAL OF APPLIED RESEARCH

3. Every ω-closed set is wgra-I-closed.

4. Every rga-closed set is wgra-I-closed.

5. Every swg-closed set is wgru-I-closed.

6. Every wgra-closed set is wgra-I-closed.

7. Every *-closed set is wgra-I-closed.

8. Every a-I-closed set is wgra-I-closed.

Proof

Straight forward.

Remark: 3.4

Converse of the above theorem need not be true as shown in the following examples.

Example: 3.5

Let $X = \{a, b, c, d\}, t = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, I = \{\phi, \{a\}\}, then t^{c} = \{\phi, X, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, t^{*} - open = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\} and t^{*} - closed = \{\phi, X, \{a\}, \{d\}, \{a, d\}, (c, d\}, \{b, c, d\}, \{a, c, d\}\}.$ closed = $\{\phi, X, \{a\}, \{d\}, \{a, d\}, (c, d\}, \{b, c, d\}, \{a, c, d\}\}.$ wgra-I-closed = $\{\phi, X, \{a\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}.$ (i). $\{a, b\}$ is wgra-I-closed, but not closed. (ii). $\{c\}$ is wgra-I-closed, but not α -closed. (iv). $\{a\}$ is wgra-I-closed, but not rga-closed. (v). $\{a, c\}$ is wgra-I-closed, but not swg-closed. (v). $\{a, c\}$ is wgra-I-closed, but not swg-closed. (v). $\{a\}$ is wgra-I-closed, but not swg-closed.

(vii). {b,d} is wgra-I-closed, but not *-closed.

Example: 3.6

Volume : 4 | Issue : 7 | July 2014 | ISSN - 2249-555X

Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}\}, \tau^{c} = \{\phi, X, \{b\}, \{a, b\}, b, c, d\}\}, I = \{\phi, \{a\}\}, \tau^{*} \text{-open} = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}, \tau^{*} \text{-closed} = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\} \text{and}$ wgra-I-closed = $\{\phi, X, \{a\}, \{b\}, \{c\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Here $\{a, b, c\}$ is wgra-I-closed, but not α -I-closed.

Remark:3.7

The concepts semi-closed, $I_{\hat{\theta}}$ closed, rps-I-closed and wgra-I-closed are independent.

Example: 3.8

Let $X = \{a, b, c, d\}, t = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, I = \{\phi, \{a\}\}, then \tau^{c} = \{\phi, X, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\} and \tau^{*}-closed = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}\}. wgra-I-closed = \{\phi, X, \{a\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}\}.$ (i). {b} is semi-closed, but not wgra-I-closed. {a,b} is wgra-I-closed, but not semi-closed.

(ii). {b,c} is $I_{\hat{\omega}}$ -closed, but not wgra-I-closed. {c} is wgra-I-closed, but not $I_{\hat{\omega}}$ -closed.

(iii). {b,c} is rps-I-closed, but not wgra-I-closed. {a,b,c} is wgra-I-closed, but not rps-I-closed.

Remark:3.9

The concepts wgru-I-closed and g-closed are independent of each other.

Example:3.10

Let $X=\{a,b,c,d\}, \tau = \{\phi, X, \{a\}, \{c,d\}, \{a,c,d\}\}, \tau^{c} = \{\phi, X, \{b\}, \{a,b\}, \{b,c,d\}\}, I=\{\phi, \{a\}\}, \tau^{*}$ -open = $\{\phi, X, \{a\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}\}, \tau^{*}$ -closed = $\{\phi, X, \{a\}, \{b\}, \{a,b\}, \{b,c,d\}\}$ and wgra-I-closed= $\{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a,c\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}.$ {a} is wgra-I-closed, but not g-closed. {c,d} is g-closed, but not wgra-I-closed.

Remark:3.11

From theorem: 3.3, remark : 3.7 and remark: 3.9, following diagram holds.

Remark:3.12

Union of two wgra-I-closed set is not wgra-I-closed.

Example:3.13

 $Let \ X=\{a,b,c,d\}, \tau=\{\phi,X,\{a\},\{c,d\},\{a,c,d\}\} and \ I=\{\phi,\{a\}\},\{c\} \ and \ \{d\} \ are \ wgr\alpha-I-closed, \ but$

 $\{c,d\}$ is not wgra-I-closed.

Remark:3.14

Intersection of two wgra-I-closed set is not wgra-I-closed.

Example:3.15

Let $X=\{a,b,c,d\}, \tau = \{\phi,X,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\}\}$ and $I=\{\phi,\{a\}\},\{a,b\}$ and $\{b,d\}$ are wgru-I-closed, but $\{b\}$ is not wgru-I-closed.

Theorem: 3.16

Let (X, τ, I) be an ideal space and $A \subseteq X$. If A is wgra-I-closed, then $cl^*(int(A)) - A$ contains no non-empty regular α -open set.

Proof

Let A be a wgra-I-closed set in X and U be a regular- α -open subset of cl*(int(A)) – A. Then A \subseteq X–U and X–U is regular α -open. Since A is wgra-I-closed, cl*(int(A)) \subseteq X–U. Which implies that U \subseteq X–cl*(int(A)). Thus U \subseteq (cl*(int(A)) \cap (X–cl*(int(A))= φ . Hence cl*(int(A))–A contains no non-empty regular α -open set.

Theorem: 3.17

Let (X, τ, I) be an ideal space and $A \subseteq X$. If A is wgr α -I-closed, then $cl^*(int(A)) - A$ contains no

non-empty regular α-closed set.

Proof Follows from theorem: 3.16.

Theorem: 3.18

Let (X, τ, I) be an ideal space and $A \subseteq X$. If A is wgra-I-closed, then $cl^*(int(A)) - A$ contains no non-empty regular open set.

Proof Follows from theorem: 3.16 and the fact that every regular open set is regular α -open.

Theorem: 3.19

Let (X, τ, I) be an ideal space and A \subseteq X. If A is wgra-I-closed, then (intA)* – A contains no nonempty regular α -open set.

Proof

Let A be a wgra-I-closed set in X. Suppose that U is a regular α -open set such that $cl^*(int(A)) \subseteq$ X –U, which implies that $(int(A))^* \subseteq$ X–U, thus $(int(A))^*$ – A contains no non-empty regular α -open set.

Theorem: 3.20

Let A be a wgru-I-closed set of an ideal topological space X. Then the following are equivalent.

(i) A is I-R-closed.

(ii) cl*(int(A)) – A is a regular-a-closed set.

(iii) (int(A))* –A is a regular- α -closed set.

Proof

 $(i) \Rightarrow (ii) Let A be I-R-closed. We have cl*(int(A))=A, then cl*(int(A)) - A = \varphi Thus, cl*(int($

A is a regular-a-closed set.

(ii)⇒(iii) Let cl*(int(A)) – A be regular-α-closed.Cl*(int(A))– A=(int(A))* – A. Therefore
 (int(A))* – A is a regular-α-closed set.

 $(iii) \Rightarrow (i) Let (int(A))^* - A be a regular-\alpha-closed set, cl*(int(A)) - A = (int(A))^* - A = \varphi. Thus$

cl*(int(A))=A. Hence A is I-R-closed.

Theorem: 3.21

Let (X, τ, I) be an ideal space and $A \subseteq X$. If A is wgra-I-closed, and whenever $A \subseteq U$ and U is a regular-open set in X, then A is weakly I_{rg} -closed set.

Proof

Let A be a wgra-I-closed set, we have, $cl^*(int(A))\subseteq U$. Then $(int(A))^*\subseteq U$. By hypothesis, A is weakly I_{rg} -closed set.

Theorem: 3.22

Let (X, $\tau,$ I) be an ideal space and A \subseteq X. If A is regular-open and wgra-I-closed, then A is *- closed set.

Proof

Let $A \subseteq A$ and A be regular open .Since A is wgra-I-closed in X, $cl*(int(A))\subseteq A$, which implies

that, $cl^*(A)=cl^*(int(A)\subseteq A$. Therefore A is *-closed set in X.

Theorem: 3.23

Let (X, $\tau,$ I) be an ideal space . Then either $\{x\}$ is regular closed (or) X–{x} is wgra-I-closed for every $x \in X.$

Proof

Suppose {x} is not regular-closed, then X-{x} is not regular-open and the only regular-open set containing X -{x} is X and cl*(int(X-{x})) \subseteq X. Hence X-{x} is wgra-I-closed set in X.

Theorem: 3.24

Volume : 4 | Issue : 7 | July 2014 | ISSN - 2249-555X

Let (X, $\tau,$ I) be an ideal space, A is regular-open and A \subseteq X. Then the following properties are equivalent.

(i) A is *-closed.

(ii) A is I-R-closed.

(iii) A is wgra-I-closed

Proof

(i)⇒(ii)Let A be *-closed and regular-open, cl*(int(A))=cl*(A)=A. Thus, A is I-R-closed.
(ii)⇒(iii)Let A⊆A and A be regular open. Since A is I-R-closed and every regular-open set is regular-open, cl*(int(A))⊆A. Thus A is wgrα-I-closed.

(iii)⇒(i) follows from theorem 3.22.

Theorem: 3.25

Let A be a wgrα-I-closed set in an ideal space X such that A⊆B⊆cl*(int(A)), then B is also an wgrα-I-closed set.

Proof

Let U be an regular α -open set of X, such that B⊆U. Then A⊆B⊆U. Since A is wgra-I-closed, cl*(int(A))⊆U. Now cl*(int(B))⊆cl*(int(cl*(int(A)))) =cl*(int(A))⊆U. Therefore B is wgra-I-closed.

Theorem: 3.26

Let A be a wgra-I-closed set in an ideal space X. Then $A\cup(X-cl^*(int(A)))$ is wgra-I-closed if and only if $(int(A))^*$ –A is wgra-I-open.

Let $(int(A))^*$ - A be wgra-I-open in X \Leftrightarrow X- $((int(A))^*$ -A) is wgra-I-closed.

 $X-((int(A))^*-A) \Leftrightarrow X\cap((int(A))^*\cap A^C)^C$

 \Leftrightarrow AU(X-cl*(int(A))).

Hence the proof.

Theorem: 3.27

Let (X, τ, I) be an ideal space and A $\subseteq X$. Th **n** A is wgra-I-open if and only if $U\subseteq int*(cl(A))$, whenever U is regular α -open and $U\subseteq A$.

Proof

Let A be wgra-I-open and U be a regular $\alpha\text{-open set}$ in X contained in A.X–U is also regular $\alpha\text{-}$

open set containing X-A and X-A is wgra-I-closed, we have $cl^{(int(X-A))\subseteq X-U}$. Which implies

that X-int*(cl (A)) \subseteq X-U.Thus U \subseteq int*(cl(A)).

 $\label{eq:conversely} \mbox{U} \subseteq \mbox{int}^*(cl(A)), \mbox{whenever U is regular α-open and $U \subseteq A$. We have $X-A \subseteq U$. Then$

 $X-U{\subseteq}A \text{ and so } X-U{\subseteq}\text{int}^*(cl(A)). Therefore \ cl^*(\text{int}(X-A)){\subseteq}U. \ Hence \ A \ is \ wgra-open.$

Theorem: 3.28

Let (X, τ, I) be an ideal space and A⊆ X. If A is wgru-I-closed, then cl*(int(A)) – A is a wgru-I-

Volume : 4 | Issue : 7 | July 2014 | ISSN - 2249-555X

open set in X.

Proof

Let A be a wgra-I-closed set in X. Suppose that U is a regular- α -open set such that $U \subseteq c!^{(int(A))}$ -A. Since A is wgra-I-closed, it follows from theorem 3.16 that $U=\varphi$. Thus, we have $U \subseteq int^{(c)}(c!^{(int(A))})$, by theorem 3.27, $c!^{(int(A))}$ -A is wgra-I-open in X.

Theorem: 3.29

Let A be a wgr α -I-open set in an ideal space X and A \subseteq X such that int*(cl(A)) \subseteq B \subseteq A, then B is also an wgr α -I-open.

Proof

Since A is wgra-I-open, then X-A is wgra-I-closed. $cl^{(int(X-A))}(X-A)$ contains no nonempty regular a-open set. Since $int^{(cl(A))}int^{(cl(B))}$,we have $cl^{(int(X-B))}cl^{(int(X-A))}(X-A)$. A)),which implies that $cl^{(int(X-B))}(X-B)cl^{(int(X-A))}(X-A)$. Thus B is wgra-open.

REFERENCE1. Acikgoz, A &Yuksel,S. some new sets and decompositions of AI-R- continuity, -I-continuity, continuity via idealization,Acta Math.Hunger, 114(1-2)(2007), 79-89. | 2. Benchalli, S.S & Wali, R.S. On rw-closed sets in topological spaces, Bull.Malays. | Math.Sci. Soc.(2) 30(2)(2007), 99-110. | 3. Dontchev, J. & Noiri, T. Quasi-normal spaces and g-closed sets, Acta Math. Hunger, 89(3)(2000),211-219. | 4. Erdal Ekici, On -open sets, A*-sets and decomposition of continuity and super continuity, Annales Univ.Sci.. Budapest 51(2008),39-51.] 5. Jankovic, D. & Hamlett, T.R. new topological form old via ideals, Amer.Math. Monthly,97(4)(1990),295-310. | 6. Jayalakshmi,A &Janaki , C.On wgr -Closed Sets in Topological Spaces, Int. | J. Math. Archieve 3(6), 2012, 2386-2392. | 7. Kuratowski, Topology, Vol.I, Academic Press,Newyork(1996). | 8. Lellis Thivagar, M. & Santhini, C. New approach of ideal topological Generalized | closed sets, Bol. Soc.Paran.Mat.V31 2(2013): 191-204. | 9. Levine. N, Generalized closed sets in topology, Rend. Circ. Mat.Palermo.19(1970), 89-96. | 10. Navaneethakrishnan M&Paulraj Joseph J, g-closed sets in ideal topological spaces, Jurnal of Advanced Research in Pure Mathematics, Vol.2, Issue 3(2010),24-33. | 12. Sakthi,B & Murugesan, S.On regular Pre Semi-I-closed sets in ideal topological spaces, Journal of Math. Analysis,Vol.3,2009,no.37,1803-1819. | 14. Vaidynathaswamy, R. Set topology, Chelsea, Publishing company, Newyork(1960). |