## Magic Squares with Pell and Pell-Lucas Entries

## KEYWORDS

## Pell and Pell-Lucas Entries, Magic Square.

## Naresh Patel

Assistant Professor (Mathematics), Government College Jobat, District - Alirajpur, Pin 457990 (M.P.) India with distinct Pell and Pell-Lucas entries where $n \geq 2$ ".

## 1. Introduction:

### 1.1. Magic Square [1]

A magic square is a square array of distinct positive integers such that the sum of the numbers along each row, column and diagonal is constant (say $k$ ). This constant $k$ is called the magic constant of the magic square. The oldest known magic square is the Chinese magic square, lo-shu shown in figure 1. Lo-shu's magic constant is 15 .

| 4 | 9 | 2 |
| :--- | :--- | :--- |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

Figure 1

### 1.2. Pell and Pell-Lucas Numbers [2]

Pell and Pell-Lucas numbers are respectively defined as

$$
\begin{cases}P_{n}=2 P_{n-1}+P_{n-2}, & P_{0}=0, P_{1}=1 \\ Q_{n}=2 Q_{n-1}+Q_{n-2}, & Q_{0}=2, Q_{1}=2 .\end{cases}
$$

## 2. Is there any Magic Square with only Pell Entries?

Answer to this question is - NO. Let us confirm this by contradiction. Suppose there is a $2 \times 2$ magic square with distinct Pell entries as figure 2 shows.

| a | b |
| :---: | :---: |
| c | $d$ |

Figure 2
Then $a+b=a+c, \quad$ so $b=c$, which is a contradiction. Thus there is no $2 \times 2$ magic square with distinct Pell entries.

Now this result can be generalized as given below:

Theorem: There are no $n \times n$ magic squares with distinct Pell entries where $n \geq 2$.

Proof: Let $P_{i_{1}}, P_{i_{2}}, \ldots ., P_{i_{n}} ; P_{j_{1}}, P_{j_{2}}, \ldots . ., P_{j_{n}}$ and $P_{k_{1}}, P_{k_{2}}, \ldots ., P_{k_{n}}$ denote the elements of the first three columns of an $n \times n$ magic squares with magic constant $S$, as shown in figure 3 .

| $P_{i_{1}}$ | $P_{j_{1}}$ | $P_{k_{1}}$ | $\ldots \ldots \cdots$ |
| :---: | :---: | :---: | :---: |
| $P_{i_{2}}$ | $P_{j_{2}}$ | $P_{k_{2}}$ | $\ldots \ldots \ldots$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdots \cdots \cdots$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdots \cdots \cdots$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdots \cdots \cdots$ |
| $P_{i_{n}}$ | $P_{j_{n}}$ | $P_{k_{n}}$ | $\cdots \cdots \cdots$ |

Figure 3
Since,

$$
\begin{aligned}
& P_{i_{1}}+P_{i_{2}}+\ldots . .+P_{i_{n}}=P_{j_{1}}+P_{j_{2}}+\ldots .+P_{j_{n}}= \\
& P_{k_{1}}+P_{k_{2}}+\ldots .+P_{k_{n}}=\mathrm{S} \text { (Say) }
\end{aligned}
$$

But they are all distinct, without loss of generality, we can assume that $P_{i_{1}}>P_{i_{2}}>\ldots . .>P_{i_{n}} ; P_{j_{1}}>P_{j_{2}}>\ldots . .>P_{j_{n}}$ and $P_{k_{1}}>$ $P_{k_{2}}>\ldots . .>P_{k_{n}}$

| a | b |
| :---: | :---: |
| c | d |

Again, without loss of generality, we can assume that $P_{i_{1}}>P_{j_{1}}>P_{k_{1}}$

$$
\begin{array}{ll}
\text { So } & P_{i_{1}}>P_{k_{1}} \text { and } P_{i_{1}} \geq P_{k_{1}+1} . \\
\Rightarrow & 2 P_{i_{1}} \geq P_{k_{1}}+P_{k_{1}+1} \tag{1}
\end{array}
$$

Now, $P_{i_{1}}+P_{i_{2}}+\ldots . .+P_{i_{n}}>P_{i_{1}}$

$$
\begin{aligned}
& \Rightarrow \quad 2\left(P_{i_{1}}+P_{i_{2}}+\ldots .+P_{i_{n}}\right)>2 P_{i_{1}} \\
& \Rightarrow \quad 2 S>2 P_{i_{1}} \geq P_{k_{1}}+P_{k_{11}+1} \quad \operatorname{Using}(1)
\end{aligned}
$$

Since $P_{k_{n}}<\ldots \ldots . .<P_{k_{2}}<P_{k_{1}}$,
Therefore $P_{k_{1}}+P_{k_{2}}+\ldots . .+P_{k_{n}}<\sum_{i=1}^{k_{1}} P_{i}$
Or $\quad 2\left(P_{k_{1}}+P_{k_{2}}+\ldots . .+P_{k_{n}}\right)<2 \sum_{i=1}^{k_{1}} P_{i}$

$$
\text { Or } \quad 2 S<2 \sum_{i=1}^{k_{1}} P_{i}
$$

But $2 \sum_{i=1}^{n} P_{i}=\left(P_{n}+P_{n+1}-1\right)$

$$
\begin{equation*}
\therefore 2 S<\left(P_{k_{1}}+P_{k_{1}+1}-1\right) \tag{2}
\end{equation*}
$$

Using (1) and (2), we have

$$
P_{k_{1}}+P_{k_{1}+1} \leq 2 S<\left(P_{k_{1}}+P_{k_{1}+1}-1\right)
$$

which is a contradiction. Hence, there are no $n \times n$ magic squares with distinct Pell entries where $n \geq 2$.

## 3. Is There Any Magic Square with Only Pell-Lucas Entries?

Answer to this question is also - NO. Again let us confirm this by contradiction. Suppose there is a $2 \times 2$ magic square with distinct Pell-Lucas entries as figure 2 shows. Then $a+b=a+c$, so $b=c$, which is a contradiction. Thus there is no $2 \times 2$ magic square with distinct Pell entries.

Now this result can also be generalized as given jelow:

Theorem: There are no $n \times n$ magic squares with distinct Pell-Lucas entries where $n \geq 2$.

Proof: Let $Q_{i_{1}}, Q_{i_{2}}, \ldots ., Q_{i_{n}} ; Q_{j_{1}}, Q_{j_{2}}, \ldots .$,

$$
Q_{j_{n}}
$$

and $Q_{k_{1}}, Q_{k_{2}}, \ldots ., Q_{k_{n}}$ denote the elements of he first three columns of an $n \times n$ magic
squares with magic constant $S$, as shown below.

| $Q_{i_{1}}$ | $Q_{j_{1}}$ | $Q_{k_{1}}$ | $\cdots \cdots \cdots$ |
| :---: | :---: | :---: | :---: |
| $Q_{i_{2}}$ | $Q_{j_{2}}$ | $Q_{k_{2}}$ | $\cdots \cdots \cdots$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdots \cdots \cdots$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdots \cdots \cdots$ |
| $\cdot$ | $\cdot$ | $\cdot$ | $\cdots \cdots \cdots$ |
| $Q_{i_{n}}$ | $Q_{j_{n}}$ | $Q_{k_{n}}$ | $\ldots \cdots \cdots$ |

Figure 4
But they are all distinct, without loss of generality, we can assume that $Q_{i_{1}}>Q_{i_{2}}>\ldots .>Q_{i_{n}} ; \quad Q_{j_{1}}>Q_{j_{2}}>\ldots . .>Q_{j_{n}}$ and $Q_{k_{1}}>Q_{k_{2}}>\ldots .>Q_{k_{n}}$

Again, without loss of generality, we can assume that $\quad Q_{i_{1}}>Q_{j_{1}}>Q_{k_{1}}$

So $\quad Q_{i_{1}}>Q_{k_{1}}$ and $Q_{i_{1}} \geq Q_{k_{1}+1}$.

$$
\begin{equation*}
\Rightarrow \quad 2 Q_{i_{1}} \geq Q_{k_{1}}+Q_{k_{1}+1} \tag{3}
\end{equation*}
$$

Now, $Q_{i_{1}}+Q_{i_{2}}+\ldots . .+Q_{i_{n}}>Q_{i_{1}}$

$$
\begin{array}{ll}
\Rightarrow & 2\left(Q_{i_{1}}+Q_{i_{2}}+\ldots \ldots+Q_{i_{n}}\right)>2 Q_{i_{1}} \\
\Rightarrow & 2 S>2 Q_{i_{1}} \geq Q_{k_{1}}+Q_{k_{1}+1} \text { Using (3) }
\end{array}
$$

Since $Q_{k_{n}}<\ldots \ldots<Q_{k_{2}}<Q_{k_{1}}$,
Therefore, $\quad Q_{k_{1}}+Q_{k_{2}}+\ldots .+Q_{k_{n}}<\sum_{i=1}^{k_{1}} Q_{i}$
Or $\quad 2\left(Q_{k_{1}}+Q_{k_{2}}+\ldots . .+Q_{k_{n}}\right)<2 \sum_{i=1}^{k_{1}} Q_{i}$
Or $2 S<2 \sum_{i=1}^{k_{1}} Q_{i}$

But $2 \sum_{i=1}^{n} Q_{i}=\left(Q_{n}+Q_{n+1}-4\right)$

$$
\begin{equation*}
\therefore \quad 2 S<\left(Q_{n}+Q_{n+1}-4\right) \tag{4}
\end{equation*}
$$

Using (3) and (4), we have

$$
Q_{k_{1}}+Q_{k_{11}+1} \leq 2 S<\left(Q_{n}+Q_{n+1}-4\right)
$$

which is a contradiction. Hence, there are no $n \times n$ magic squares with distinct Pell-Lucas entries where $n \geq 2$.

