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ABSTRACT In this paper, I have proved that there is no 2x2 magic square with distinct Pell entries as well as distinct Pell-
Lucas entries. Then I generalized this result for nxn magic squares that is, “there are no nxn magic squares 

with distinct Pell and Pell-Lucas entries where n≥2”.
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1. Introduction: 

 
1.1. Magic Square [1] 

   

A magic square is a square array of 

distinct positive integers such that the sum 

of the numbers along each row, column and 

diagonal is constant (say k). This constant k 

is called the magic constant of the magic 

square. The oldest known magic square is 

the Chinese magic square, lo-shu shown in 

figure 1. Lo-shu’s magic constant is 15.  

   

   

    

   

                      Figure 1 

 
1.2. Pell and Pell-Lucas Numbers [2] 

 
Pell and Pell-Lucas numbers are 

respectively defined as 
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2. Is there any Magic Square with only Pell 

Entries? 

 Answer to this question is – NO. Let us 

confirm this by contradiction. Suppose there is a  

22×  magic square with distinct Pell entries as 

figure 2 shows.        

  

                    

                           

          Figure 2 

Then caba +=+ , so cb = , which is a 

contradiction. Thus there is no 22×  magic 

square with distinct Pell entries. 

 

Now this result can be generalized as given 

below:   

Theorem: There are no nn×  magic squares 

with distinct Pell entries where .2≥n  

Proof: Let
1i

P ,
2i

P , ….., 
ni

P ; 
1j

P ,
2j

P , ….., 
nj

P  

and 
1kP ,

2kP , ….., 
nkP  denote the elements of the 

first three columns of an nn×  magic squares  

with magic constant S , as shown in figure 3.  
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Since, 

  
1i

P +
2i

P + …..+
ni

P = 
1j

P +
2j

P + …..+
nj

P = 

  
1kP +

2kP + …..+
nkP = S (Say) 

But they are all distinct, without loss of 

generality, we can assume that  

1i
P >

2i
P > …..>

ni
P ;  

1j
P >

2j
P > …..>

nj
P  and 

1kP >

2kP > …..>
nkP  

Again, without loss of generality, we can 

assume that    
1i

P  > 
1j

P  > 
1kP   

So >
1i

P  
1kP  and ≥

1i
P  11+kP . 

≥⇒
1

2 iP  11 1k kP P ++         (1) 

Now, 
1i

P +
2i

P + …..+
ni

P >
1i

P  

1
(2 iP⇒ +

2i
P + …..+ )

ni
P > 2

1i
P  

S2⇒ > 2 ≥
1i

P 1111 ++ kk PP   Using (1) 

Since
12

...... kkk PPP
n

<<< ,  

Therefore  
1kP +

2kP + …..+
nkP <∑

=

1

1

k

i
iP  

Or 
1

(2 kP +
2kP + …..+ )

nkP < 2∑
=

1

1

k

i
iP  

Or S2 < 2∑
=

1

1

k

i
iP  

But ∑
=

n

i
iP

1
2 = ( )11 −+ +nn PP  

∴ S2 < ( )1111
−+ +kk PP         (2) 

Using (1) and (2), we have 

11 1k kP P ++  S2≤ < ( )1111
−+ +kk PP   

which is a contradiction. Hence, there are no 

nn×  magic squares with distinct Pell entries 

where .2≥n  
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squares with magic constant S , as shown below. 
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