

An Sem Analysis of Microleakage and Marginal Adaptation of All in one Single Bottle Self Etch Adhesive with An Extra Hydrophobic Layer

KEYWORDS

SINGLE BOTTLE SELF ETCH ADHESIVE, HYDROPHOBIC LAYER, MICROLEAKAGE, SCANNING ELECTRON MICROSCOPY.

Dr.Janeesha.C,MDS	Dr. Priyadarshini Hegde,MDS	Dr Mithra N Hegde, MDS
Post Graduate student, Department of conservative Dentistry and Endodontics A.B.Shetty Memorial Institute of Dental Sciences, Nitte University,India	Professor, Department of Conservative Dentistry and Endodontics, A.B.Shetty Memorial Institute of Dental Sciences Nitte University,Mangalore Karnataka ,India	Senior Professor and Head of the Department, Department of Conservative Dentistry and Endodontics, A.B.Shetty Memorial Institute Of Dental Sciences Nitte University, Mangalore Karnataka, India

ABSTRACT

The aim of this in vitro study was to evaluate and compare Microleakage and Marginal Adaptation of three All in one single bottle self etch adhesive system with and without applying an extra Hydrophobic layer. Marginal adaptation at the Resin Dentine interface can be increased and microleakage can be decreased by using a single bottle self etch adhesive system along with an extra hydrophobic layer so that we can improve the quality and longevity of composite Restoration. Three single bottle self etch adhesives were used in this study which included Adper easy one, Xeno V and Group and One two step self etch adhesive in the control group which was Clearfill SE. Statistical Analysis was done by one way Anova and Tukey's HSD test. Result of the present study showed that an extra Hydrophobic layer application significantly reduced the microleakage and improved the marginal adaptation in All in one single bottle self etch adhesives.

The classic concept of three step bonding to dental tissues has developed rapidly to more user friendly, simplified adhesive systems. These comprise the two step etch and rinse and the self etch systems .The self etch systems were initially available in two steps and was further reduced to a one step procedure for simpler and faster application.

Despite the user friendly features of this category of adhesives, they are composed of high concentrations of hydrophilic and / or ionic resin monomers and this fact associated with the lack of non solvented resin coating turned them into permeable membranes that permit rapid dentinal fluid transudation across the polymerized adhesives.

Moreover, this one step adhesive solutions contain high amount of water which is required to dissociate the weak acidic methacrylate monomers into ionized forms for permeation into the smear layer and underlying mineralized dentin. This excess water may prevent the optimal polymerization of the adhesive monomers and leads to phase separation.

Initially, self-etch adhesives were introduced for use in a two step procedure. After application of an acidic primer, a relatively hydrophobic bonding resin was to be applied on top of the primed surface. Later All in One self etch systems were developed. This was found to have more microleakage due to their phase separation due to both hydrophilic and hydrophobic contents in the same bottle.

Hence, there was a need to study to evaluate and compare the microleakage and marginal adaptation of single bottle self etch adhesive system with and without an extra hydrophobic layer.

MATERIALS AND METHODS

Class V cavities with Dimension of 3mm mesiodistally and

1.5mm depth were prepared on the buccal and lingual sides of thirty five freshly extracted caries free premolars .Teeth were divided into control group and experimental group . In the control group, two bottle adhesive clear-fill SE (kuraray medical inc-1621 sakazu, kurashlki, okayama 710-0801, japan) was used.In the experimental groups 3 single bottle self etch adhesives were used -Adper easyone (3M EspeD-82229,seefield ,Germany), Xeno V (GC Corporation, Tokyo, Japan) and G-bond (Densply DeTrey GmbH 78467, Konstanz, GERMANY) which was applied according to manufacturer's direction on buccal side and with an extra hydrophobic layer on the lingual side respectively (N=10)

(Table 1-showing the method of application in control and experimental group).

Table 1-Adhesive systems and Method of Application

Adhesive systems	Application according to Manufacturers direction	With an extra Hydrophobic layer application		
Clearli SL(2 bottle) (CONTROL)	LApply 2 coats of primer under pressure[20 sec) 2.Air stream(10 sec at 20em) after application of each cost 3.Aeply one cost of adhesisv(15 sec) 4.Air stream to make the bond film uniform(5 sec at 20em) 5.Light activation(10 sec-600 Mw/cm ²)			
Adper casyono(single bottle) (EXPERIMENTAL)	I.Apply one cost of adhesive under pressure (20 sec) 2. Centle air stream for 5 sec 3.Apply a second cost of adhesive under pressure(20 sec) 4. Centle air stream 5.Light activation(10 sec-600 mWs/cm ²)	1.Step 1-5 from Manufacturer' Direction 2.Apply one cost of adhesive from clearfi SE Light activation (10 sec- 600mW/cm²)		
Xeno V(single bottle) (EXPERIMENTAL)	LApply xeno V sufficiently werning all the curvity surfaces uniformly. 2. Agitate the adhesive for 20 sec. 3.Evaporate the solvent thoroughly by airblowing for 5 sec until there is no movement of the adhesive. 4. Cure for 20 sec	1 steps 1-5 from Manufacturer direction. 2 Add the adhesive from cleart SE.Aimteram to make the film uniform. 3 cure for 20 sec		
G-bond(single bottle) (EXPERIMENTAL)	LApply one cost of adhesive and semb for 5 see. 2.Adhesive was left undisturbed for 5-10 see. 3.Air dry under maximum pensure for 5 see 4.Light curing for 10 see at 600 Mw/on?	Lateps 1-4 from manufacture/ direction. 2. Apply one coat of adhesive from Clearfil SE. 3. Ainstream to make the bond film uniform() see at 20 cm) 4. Light activation (10 see- coton Wicor)		

Resin composite (Filtek Z 350 composite restorative (A2 shade,3M Espe dental products.St.paul MN 55144-1000 USA) was applied in incremental layers and cured as per the manufacturers instructions. Restored teeth were stored in distilled water for 10 days and then subjected to thermocycling (500 cycles,5 to 55 C, 30 seconds dwell time). All specimens were immersed in 50% weight by volume silver nitrate solution (Qualigens fine chemicals. A division of Maxosmithkline pharmaceuticals) for 24 hours. After 24 hours, specimens were removed from silver nitrate solution and washed under running water for 5 minutes and placed in the photodeveloping solution for 8 hours while exposing to fluorescent light. After 8 hours, the teeth were removed from the developing solution, and sectioned buccolingually using diamond disc.

Samples were demineralised using 6N HCl for 30 seconds and deproteinized with 2.5 % Naocl for 10 minutes to enable examination of the interface and left to dry for 24 hours. Samples were Gold sputtered (JEOL, JFC-1600 Auto fine Coater, Tokyo, Japan) and viewed using scanning Electron microscopy (JEOL, JS M-6380LA, Tokyo, Japan) under various magnifications

(Figure 2 –showing SEM picture of microleakage in Control an Experimental Groups)

Figure-2 -SEM picture of microleakage in control an experimental Groups)

GROUP	ACCORDING TO MANUFACTURERS DIRECTION	WITH AN EXTRA HYDROPHOBIC LAYER
1.CLEARFILL SE (control)	A	В
2.ADPER EASYONE (Experimental)	V FIV	
3 XENO V (Experimentall)		DA
4.G-BOND (Experimental)		

Leakage was calculated by the Global leakage formula

Overall leakage = $P/L \times 100$

(P = Length of silver nitrate penetration along the resin dentine interface, L=Total length of the dentinal cavity wall on the cut surface). Statistical analysis was done using One way Anova and tukey's HSD test.

RESULT AND DISCUSSION

In one way Anova test which compared the control group and the experimental Group ,Microleakage was found to be statistically significant (p<0.001). Tukey's HSD test was used for inter group comparison. There was statistically significant difference in microleakage when clearfill SE (GROUP 1) was compared to Xeno V with an extra hydrophobic layer (GROUP 3B) (p=0.042). Microleak-

age was reduced in Adper easyone when Hydrophobic layer was applied (GROUP 2B) (p=0.001) compared to that applied according to manufacturer's Direction. (Group 2A). Xeno V (GROUP 3A) had lesser microleakage than Adper easyone (GROUP 2A) (p value=0.011) and G-bond (GROUP 4A)(p value=0.011) when applied according to manufacturer's direction. Xeno V(GROUP 3B) had significantly lesser microleakage than G-bond (GROUP 4B)(p=0.002) when applied with an extra hydrophobic layer. Extra Hydrophobic layer significantly reduced microleakage and improved marginal Adaptation in All the three All in one single bottle Adhesives.

(Table-3,4 indicates statistical analysis indicating microleakages between control and experimental groups)

	1 004 000	м				
	N	Mean	Std. Deviation	Mean Square	1	Sign
CLEARFILL SE	10	27.71	5.093144	375.798	9.527	50.001
ADPER EASYONE MO	10	35.007	5.117719			
ADPER EASYONE HL	10	22,674	9.264685			_
XENO V MD	10	24,892	7.147909			
XENO V HL	10	18.959	3.404913			
G-BOND MD	10	34,999	6.868444			
G-BOND HL	10	30.772	5.319304			
Total	-1.755	27.859	8.288183			
Callings (See) a sea	\$		and the second second	casyone, As	eno v ano	G-bond usin
	_			casyone, As	ino v ano	G-bond usin
Tukey HSD	7	acus.	and press the last	- 1300		
	7	ROUP	Mean Difference	1,000		FVALUE
Tukey HSD 60 GROUP	nie	ROUP SYONE MO	Mean Difference 6-8 -7.297	- 1300	- 54	FVALUE
Tukey HSD 00 GROUP CLEARFILL SE AC	UI G	SYONE MD SYONE HE	Mean Difference (H) -7.297 5.036	2.8087 2.8087 2.8087	54 72 0.14 72 0.55	FVALUE 4 0.14 8 0.55
Tukey HSD 00 GROUP CLEARPILL SE AC	UI G	SYONE MD SYONE HE.	Mean Difference 6-8 -7-297 5-036 2-818	2.8087 2.8087 2.8087 2.8087	546 72 0.14 72 0.55 72 0.95	#VALUE 4 0.14 8 0.55 1 0.95
Tukey HSD (I) GROUP CLEARFILL SE AC ELEANTILL SE AL ELEANTILL SE ELEANT SE ELEANTILL SE ELEANTILL SE ELEANTILL SE ELEANTILL SE ELE	UI G	SYONE MD SYONE HL ID L	Mean Difference 6-8 7-297 5-036 2-818 8-751	2.8087 2.8087 2.8087 2.8087 2.8087	546 72 0.14 72 0.55 72 0.95 72 0.04	#VALUE 4 0.14 8 0.55 1 0.55 2 0.04
Tukey HSD 60 GROUP CLEARFILL SE AC 81 83 6	UI G PER EAC PER EAC NO V M NO V H SOND M	SYONE MD SYONE HL 4D L	Mean Difference 6-8 -7-297 5-036 2-113 8-751 -7-289	2.8087 2.8087 2.8087 2.8087 2.8087 2.8087	72 0.14- 72 0.55 72 0.95- 72 0.96- 72 0.04-	# VALUE 4 0.14 8 0.55 1 0.55 2 0.04 5 0.14
Tukey HSD 40 GROUP CLEARFILL SE AC ST SE G G	UI G PER EAC PER EAC NO V M NO V H SONO M BOND H	SYONE MD SYONE HL 4D L 4D	Mean Difference 6-0 -7-297 5-036 2-213 8-751 -7-299 -3-062	2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087	72 0.14 72 0.55 72 0.95 72 0.94 72 0.14 72 0.92	FVALUE 4 0.14 8 0.35 1 0.99 2 0.04 5 0.14 9 0.92
TUREY HSD 10 GROUP CLEARFILL SE AS SE	UI G PER EAC NO V M NO V M SOND M BOND H	SYONE MD SYONE HE. 4D E. 4D E. SYONE HE.	Mean Difference 8-16 -7.297 5.006 2-818 8.751 -7.289 -3.002 12.333	2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087	546 72 0.14 72 0.55 72 0.95 72 0.04 72 0.14 72 0.90 72 0.00	#VALUE 4 0.14 8 0.35 1 0.95 2 0.04 5 0.14 9 0.32 1 0.00
Tukey HSD 00 GBOUP CLEARING SE AG SE	UI G PER EA: NO V M NO V H SOND M BOND H	SYONE MO SYONE HE. NO E. NO E. SYONE HE.	Mean Difference 6-8 -7,297 5,006 2,418 8,751 -7,289 -3,062 12,333 10,115	2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087	56 72 0.14 72 0.55 72 0.95 72 0.04 72 0.92 72 0.00	FVALUE 4 0.14 8 0.35 1 0.95 2 0.04 5 0.14 9 0.92 1 0.00
CLEARFILL SE AC	UI G PER EA: NO V M NO V H SONO M BOND H PER EA:	SYONE MID SYONE HE. NO IL SYONE HE.	Mean Difference 6-10 7-297 5-036 2-318 8-751 -7-289 -3-042 12-333 10-115 0-008	2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087	56 772 0.14 772 0.55 772 0.95 772 0.04 773 0.92 773 0.00 774 0.00	FVALUE 4 0.14 8 0.35 1 0.95 2 0.04 5 0.14 9 0.32 1 0.00 1 0.00
TUREY HSD 00 GROUP CLEARING SE AC EL AC AC AC AC AC AC AC AC AC A	DIG PER LA: PER LA: NO V M NO V M SONO M SONO M PER LA: NO V M SONO M	SYONE MID SYONE HE. 4D E. 4D E. SYONE HE. 4D 4D	Mean Difference 6-11 -7-297 5,036 2-318 8-751 -7-299 -3,062 12-333 10:115 0,008 3-755	2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087	56 772 0.14 772 0.55 772 0.95 772 0.04 773 0.14 773 0.92 774 0.00 775 0.00	#VALUE 4 0.14 8 0.35 1 0.95 2 0.06 5 0.14 9 0.93 1 0.00 1 485 1 9 0.83
Tukey HSD 00 GROUP CLEARFILL SE AC EXTENSION AND ACOPER EASTONE ACOPER EASTONE HE NE GG	UI G OPER EAC NO V M NO V M SONO M SONO M SONO M SONO M SONO M SONO M	SYONE MID SYONE HE. 4D E. 4D E. SYONE HE. 4D E.	Mean Difference (6-16) 7-297 5-036 2-818 8-751 -7-299 -1-062 12-333 10-115 0-008 3-755 -8-098	2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087	56 72 0.14 72 0.55 72 0.95 72 0.95 72 0.95 72 0.95 72 0.95 72 0.95 73 0.95 74 0.95 75 0.95 77 0.00 77 0.00 77 0.00 77 0.00 77 0.00	FVALUE 4 0.14 8 0.35 1 0.95 2 0.04 9 0.92 1 0.00 1 4.61 1 9 0.83 5 0.07
TUREY HSD 00 GROUP CLEARING SE AC AC AC AC AC AC AC AC AC A	UI G PER EAC NO V M NO V M SONO M SONO M SONO M SONO M SONO M SONO M	SYONE NID SYONE HE. 4D E. 4D E. SYONE HE. 4D E. E. E. E. E. E. E. E. E. E. E. E. E.	Mean Difference 8-8 7-297 5,036 2,418 8,751 -7,289 -3,062 12,333 10,115 0,008 3,755 -4,098 5,933	2 804 Error 2 8067 2 8067	56 72 0.14 72 0.55 72 0.55 72 0.04 72 0.52 72 0.00 72 0.01 72 0.01 72 0.01 72 0.01 72 0.01 72 0.01	# VALUE 4 0.14 8 0.35 1 0.55 2 0.22 5 0.14 9 0.32 1 0.00 1 0.00 1 0.00 1 0.00 5 0.01 8 0.00 8 0.35
TUREY HSD (I) GROUP CLEARING SE AC ET G ACPER EASTONE ACPER EASTONE IN SE ACPER EASTONE IN SE G ACPER EASTONE IN SE G ACPER EASTONE IN SE G G ACPER EASTONE IN SE G G G C C C C C C C C C C	UI G OPER EAC NO V M NO V M SONO M SONO M SONO M SONO M SONO M SONO M	SYONE MID SYONE HIL NO L SYONE HIL SYONE HIL NO NO NO NO NO NO NO NO NO NO NO NO NO	Mean Difference (6-16) 7-297 5-036 2-818 8-751 -7-299 -1-062 12-333 10-115 0-008 3-755 -8-098	2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087 2.8087	5% 772 0.14 772 0.55 773 0.95 773 0.95 773 0.50 773 0.50 773 0.50 773 0.50 774 0.50 775 0.50 777 0.50 777 0.50 777 0.50 777 0.50 777 0.50 777 0.50 777 0.50	# VALUE 4 0.14 8 0.25 1 0.55 2 0.04 5 0.14 9 0.39 1 0.00 1 4.01 1 9 0.88 0.39 1 0.00

According to the present study, it was observed that Phase separation was seen in 'All in one single bottle self etch adhesives' when it was used according to manufacturer's direction because it contains both hydrophilic and hydrophobic components in a single bottle. This lead to microleakage which was traced using silver nitrate. Application of Hydrophobic layer from two bottle self etch adhesive increased the adaptation of composite to dentine, decreased microleakage and increased the longevity of composite Restoration.

1. Van Meerbeek B,De Munck J,Yoshida Y,Inoue S,Vargas M,Vijay P, et al(2003) Buonocore memorial lecture. "Adhesion to enamel and dentin:current status and future challenges.Operative Dentistry;28:215-35 | 2. TAY FR,Pashley DH,Suh BI,Carvalho RM,Itthagarun A(2002) "single step adhesives are permeable membranes",Journal of Dentistry;30:371-82 | 3. Tay FR,Pashley DH,Garcia-Godoy F,Yiu CK(2004). Single step,self-etch adhesives behave as permeable membranes after polymerisation.part II-silver tracer penetration evidence. American Journal of Dentistry, 17:315-22 | 4. Tay FR,Pashley DH,Suh B,Carvalho R,Miller M(2004) "single step self etch adhesives behave as permeable membranes after polymerisation.Part I-Bond strength and Morphologic evidence. American Journal of Dentistry;17:271-8 | 5. Jacobsen T,Soderholm KJ(1995).some effects of water on dentine bonding.Dent Materials; 11:132-6 | 6. Cadenaro M,Antoniolli F,Sauro S,Tay FR,Di Lenarda R,Prati C, et al(2005). Degree of conversion and permeability of dental adhesives,European Journal of oral sciences, 113:525-30 |