
INDIAN JOURNAL OF APPLIED RESEARCH X 167

Volume : 4 | Issue : 7 | July 2014 | ISSN - 2249-555XReseaRch PaPeR

A Novel and Autonomic Model to Enhance
Performance and Security of a Relational Database

Management System.

S.Deepa Lakshmi S L Aarthy
M.Tech(IT) Student, School of Information Technology

& Engineering, VIT University,Vellore,India
Assistant Professor, School of Information Technology

& Engineering, VIT University, Vellore – 632014.

Keywords Log Shipping, SQL Injection, e-Purge, Indexing.

Engineering

ABSTRACT The most important challenge faced from small level to top level business companies is how efficiently the
company's information are stored and protected from unauthorized use. This information includes past as

well as current transactions, top priority information about its customers, vendors, etc. As the business grows, this informa-
tion also grows tremendously occupying huge volumes of storage thereby paving the path to space as well as performance
overhead. Database servers are used in various software environments in which each application has its own functionality
and workload. Now this is the most challenging problem to be resolved by the database administrator who is sole respon-
sible of the server holding the confidential data of a company. Also according to OWASP top 10 web application attacks,
SQL Injection has been ranked as first, which is based on altering input queries to the database and eventually getting sen-
sitive data information or even corrupting the database by appending any drop sql commands. Therefore suitable methods
needs to be deployed immediately in order to save any information loss or piracy which impacts the growth of the business
highly. In this paper, we have developed a model to improve performance as well as security of the database by setting new
strategies and by exploiting various features of SQL

1. INTRODUCTION
A database administrator is responsible for the security ,
integrity and performance of all databases in a server. To
improve performance, a DBA should choose indices that is
suitable for a particular workload. This process is termed as
Index tuning[1]. System can initiate this process by recom-
mending suitable indices by evaluating the process work-
load. However choosing the right indices is a challenging op-
timization task: some indices may be chosen for a particular
condition queries whereas this could create a performance
overhead on other cases. Due to this, every DBA rely on au-
tomated tools for indexing which can choose set of indices
after analysing the workload. We have developed a novel
model which would perform index tuning along with other
performance and security measures of the workload. As it
is perform online with other query processing techniques a
DBA can request for indices at any point of time. Another
important responsibility of a DBA is to upgrade the existing
database server to higher versions to exploit new features
added in it. Installing and testing latest versions of database
servers is a complicated task of a DBA. Our model studies
the important features of latest versions of SQL and give it
as an advantage to the existing product. SQL Log Shipping
is a high availability technology which helps in database re-
covery during failure. It involves taking a database backup
and following transaction log backups from the source or
primary server and restoring it into the destination or sec-
ondary server. Purging is one of the performance measure
that is attracted by DBA’s. As it directly reduces the space
of the database used, it increases the performance of the
database drastically. Database approach is to maintaining
the data consistent across different databases. In a business
environment data integrity is established between locations
where different servers are hosted and also across databases
where postings done from one to other viz. sales to general
ledger. In such a scenario, purging of data in one database
should also be handled in the other database so that there
would not be any data mismatch across modules. We have
proposed a new purging technique e-Purge which sustains
the data integrity across different modules thereby different
databases in a traditional business setup. Finally as a security
measure we identified the OWASP(Open Web Application
Security Project) topmost web application attacks viz. Sql
injection and validated the queries which can be attacked
using sql injection methodology.

2. RELATED WORK
Database Performance tuning is a field where the scope for
research is far above the ground. We were motivated by the
below topics, namely semi automatic index tuning, no db
philosophy, stochastic database cracking over adaptive in-
dexing and database virtualization.

2.1 Semi automatic index tuning
In this paper, a semi automatic index tuning tool was pro-
posed which aims in providing better index recommenda-
tions to DBA at any point of time. It also gives scope to the
DBA to provide feedback about the index that is chosen.
WFIT(Work Function Algorithm for Index Tuning) [1] index-
tuning algorithm[1] was proposed which implements semi-
automatic index on end to end basis. This algorithm takes
the current workload and the DBA feedback as input and
computes a set of indices as output. The workload (Q) of a
database is modelled as a stream of queries and updates[1].

2.2 NoDB Philosophy
A new need as a result of data deluge[2] is described as
NoDB philosophy in which the traditional row-wise data is
transformed into NoDB system. Querying directly from raw
data files instead of data loading or restoring is implemented
in this paper. A typical row-store dbms arranges the data in
tuples one after which are stored in pages in the background.
These pages should be loaded first in order to convert from
page format to tuple format. PostgreSQL 9.0 is used to prove
that the NoDB philosophy provide better access to the data
than the traditional dbms. Positional maps and caching tech-
nologies are proposed in handling raw data files.

2.3 Stochastic DB Cracking
In this paper, database cracking[4] is proposed to be more
efficient to adaptive indexing[3] which is creating and main-
taining indices. Cracking aims at automatically adapting
appropriate indices without human intervention. Stochastic
cracking[3] uses a decision making algorithm to reorganize
data from query hints. DDC(Data Driven Center) algorithm
was proposed which performs range partitioning of column-
store information. It aims in halving the array and reorganize it
based on the attribute.DDR(Data Driven Random) algorithm
is based on random cracks. These algorithms perform two
cracking actions: 1. center or random cracks 2. query bounds.
Progressive Stochastic approach was also highlighted to be a

168 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 4 | Issue : 7 | July 2014 | ISSN - 2249-555XReseaRch PaPeR

future work of this research.

2.4 Database Virtualization
Resource virtualization aims at creating a abstract layer be-
tween the actual hardware which provides resources namely
RAM, power, CPU cycles etc from the logical entities which
consumes the resources viz. email, web service etc.[5]. A
popular example is the usage of virtual machines (VM) in-
stead of traditional machines using individual processors.
This would lead to database systems be run in virtualized ma-
chines. Though it has many advantages, it may also lead to
many bottlenecks in tuning. This paper studies the different
problems that may arise due to database systems running on
a virtualized machine and also proposed a cost model based
on workload for performance tuning of the database.

3. PROPOSED MECHANISM
The proposed model should be able to increase the per-
formance of the database operations without involving any
major changes in the hardware configuration or the software
application thereby being economical. We would like to use
an efficient methodology “Log Shipping” available in SQL
Server to send transactions from the primary server to any
other secondary server automatically. By this overhead of a
single server storage space is drastically reduced thereby in-
creasing the overall performance of the primary server. SQL
Server latest releases such as SQL Server 2012, 2014 new
querying techniques can be extensively replaced instead of
old queries in the existing product thereby exploiting the
benefits from tuned queries. Our model would focus on con-
version of such queries.

Microsoft SQL Server 2008 provides a number of en-
hancements and new functionality, building on previous
versions.
· Activity Monitor
· [SQL Server]Audit
· Backup Compression
· Central Management Servers
· Data Collector and Management Data Warehouse
· Data Compression
· Policy Based Management
· Predictable Performance and Concurrency
· Resource Governor
· Transparent Data Encryption(TDE)
· SQL Log Shipping

SQL injection is a code injection technique, used to at-
tack data driven applications, in which malicious SQL state-
ments are inserted into an entry field for execution. As a se-
curity measure, SQL-IA (SQL Injection Attacks) prone queries
are identified and the same should be modified.

3.1 Resource Governor

3.1 SQL Log Shipping

3.2 Query Tuning
3.2.1 Conversion Guidelines with Example
3.2.1.1 Left Outer Join (*=)
Example
Original Code
SELECT *
FROM
fs_analysis_master mst,
common..fs_analysis_master_shd shd
WHERE
mst.company_code= ‘XXXXX’
AND mst.locn_code=’XXXXX’
AND mst.company_code*= shd.fs_company_code
AND mst.locn_code*= shd.fs_locn_code
AND mst.fs_analysis*=shd.fs_analysis
AND mst.sub_analysis*=shd.fs_sub_analysis
AND mst.posting_level=’D’
AND mst.del_status=’0’
AND shd.fs_lang_id =1

Converted Code
SELECT *
FROM
fs_analysis_master mst LEFT OUTER JOIN
common..fs_analysis_master_shd shd
ON
(shd.fs_lang_id = 1
AND mst.company_code = shd.fs_company_code
AND mst.locn_code = shd.fs_locn_code
AND mst.fs_analysis = shd.fs_analysis
AND mst.sub_analysis = shd.fs_sub_analysis)
WHERE mst.company_code = ‘XXXXX’
AND mst.locn_code = ‘XXXXX’
AND mst.posting_level = ‘D’
AND mst.del_status = ‘0’

3.2.1.2 Right Outer Join (=*)
Example:
Original Code
SELECT *
FROM common..pur_company_vendor_details mst,
apdb..fs_bank_detail bm,
common..pur_company_vendor_details_shd shd
WHERE mst.company_code = ‘XXXXX’
AND mst.vendor_code = ‘YYYYY’
AND shd.company_code=* mst.company_code
AND shd.vendor_code =* mst.vendor_code
AND shd.payment_serial_no=* mst.payment_serial_no
AND bm.bank_code = ISNULL(mst.vendor_bank_id,’’)
AND shd.lang_id = 1
AND bm.company_code = ‘XXXXX’

Converted Code
SELECT *
FROM
apdb..fs_bank_detail bm,
common..pur_company_vendor_details_shd shd RIGHT
OUTER JOIN

INDIAN JOURNAL OF APPLIED RESEARCH X 169

Volume : 4 | Issue : 7 | July 2014 | ISSN - 2249-555XReseaRch PaPeR

common..pur_company_vendor_details mst
ON
(shd.lang_id = 1
AND shd.company_code = mst.company_code
AND shd.vendor_code = mst.vendor_code
ANDshd.payment_serial_no= mst.payment_serial_no)
WHERE mst.company_code = ‘XXXXX’
AND mst.vendor_code = ‘YYYYY’
AND bm.bank_code= ISNULL(mst.vendor_bank_id, ‘’) AND

bm.company_code = ‘XXXXX’

3.2.1.3 Column name or number of supplied values does
not match the table definition.
In an insert statement the insert column list should match
with the select column list.

Example:
Original Code
SELECT fs_analysis,
fs_description,
NULL,
NULL,
1
FROM fs_analysis_master
WHERE company_code = ‘XXXXX’
AND locn_code = ‘XXXXX’
AND del_status = ‘0’
AND level_no = 0

Converted Code
SELECT fs_analysis,
fs_description,
NULL,
NULL,
1,
NULL,
NULL
FROM fs_analysis_master
WHERE company_code = ‘XXXXX’
AND locn_code = ‘XXXXX’
AND del_status = ‘0’
AND level_no = 0

3.2.1.4.Ambiguous column name
When a particular column name is selected more than once
in a select statement and when you have an Order by clause
for this select on this column name.

Example:
Original Code
SELECT company_code,location_code,
tran_type,tran_grp_tmp, tran_no_tmp,
act_inc_date, curr_code,
vch_serial_no, vch_serial_no
FROM gl_bank_postings_temp
WHERE host_id = ‘1’
ORDER BY vch_serial_no

Converted Code
SELECT company_code,location_code,
tran_type,tran_grp_tmp, tran_no_tmp,
act_inc_date, curr_code,
vch_serial_no, vch_serial_no
FROM gl_bank_postings_temp
WHERE host_id = ‘1’
ORDER BY 8

3.2.1.5 Table Alias should be used in order by clause when
a statement has a UNION,INTERSECT or EXCEPT

3.2.1.6 Column name appears more than once in the re-
sult column list

3.2.1.7 Aggregate may not appear in the set list of an
UPDATE statement

3.2.1.8 HOLDLOCK
The SQL statements with Table Hints like HOLDLOCK should
be replaced as WITH (HOLDLOCK) or (HOLDLOCK)

3.2.1.9 Runtime Errors
These problem are encountered while the procedures are ex-
ecuted Ambiguous Column Name Error in #Temp table

3.2.1.10 System Table References
Many system tables that were undocumented in prior releas-
es have changed or no longer exist; therefore, using these
tables may cause errors after upgrading to SQL Server 2008.

3.2.1.11 Timestamp
In an insert statement, when trying to insert a timestamp vari-
able to a timestamp column in a table error is encountered.

3.2.1.12 SQL2008 GRANT Permission on various objects
The ALL permission is deprecated and maintained only for
compatibility. It DOES NOT imply ALL permissions defined
on the entity.

3.3 Targeting SQL Injection
OWASP is an open-source web application security project. It
aims at providing a document every year which would list the
top 10 vulnerabilities to web applications. In 2013, Injection
flaws such as SQL, OS and LDAP injection have been rated
first among the vulnerabilities.[6] Sql injection is a method
used to target data driven applications in which malicious
SQL statements are inserted into an entry point for execu-
tion which leads to dropping of objects or retrieving sensitive
information. In the proposed model, we have an additional
feature to enhance the product from the topmost OWASP
attacks. Every stored procedure is scanned for any dynamic
execution statement in it which is vulnerable to become an
entry point for sql injection.

4. EVALUATION
We compared the working of our proposed model with re-
cent techniques proposed under database performance tun-
ing.

4.1 NODB Approach
There are several tradeoffs in this method. Querying from raw
data files will pose an additional overhead to the execution
memory. Raw data costs and I/O costs rise up a tuning tool is
required to balance the cost. Further raw data files are unreli-
able as they can be corrupted which is unknown prior to que-
rying which would result in false or corrupt data mismatches
and delay in query processing time.

4.2 ASCII Based and AMNESIA
These methods were proposed for detecting SQL Injection
attacks wherein ASCII method, the corresponding ASCII
code is stored for user login and password to avoid any il-
legal entry points for hackers. But this method uses only 1
byte per character and also limit the language to be English
only. In the latter method (AMNESIA) cannot be applied to
web applications that employ new query development para-
digms. Moreover it is unable to detect attacks in stored pro-
cedures.

The drawbacks that were discussed in the above techniques
are rectified to greater extent in the proposed model.

5. CONCLUSION
In this paper, we have implemented a model to tune a given
database in SQL by performing query tuning as per the lat-
est service pack release of SQL. Additionally, to increase the
performance of the server, Log Shipping feature of SQL is
been exploited. Security is provided by detecting SQLIA
in the stored procedures and the database administrator is
alerted for the same.

170 X INDIAN JOURNAL OF APPLIED RESEARCH

Volume : 4 | Issue : 7 | July 2014 | ISSN - 2249-555XReseaRch PaPeR

In future we would like to improve the model with more que-
ry tuning concepts and also to enhance security by detecting
other developing vulnerabilities such as cross side scripting.

REFERENCE [1] Karl Schnaitter, Neoklis Polyzotis, "Semi-Automatic Index Tuning: Keeping DBAs in the Loop", IEEE 2011. | [2] Ioannis Alagiannis Renata
Borovica, "NoDB: Efficient Query Execution on Raw Data Files", SIGMOD 2012. | [3] Felix Halim ,Stratos Idreos, "Stochastic Database Cracking:

Towards Robust Adaptive Indexing in Main-Memory Column-Stores", Proceedings of the VLDB Endowment,2012 | [4] S. Idreos. Database cracking: Towards auto-
tuning database kernels. CWI, PhD Thesis, 2010. | [5] https://we.riseup.net/debian/resource- | virtualization. | [6] https://www.owasp.org/index.php/Top_10_2013-
Top_10. | [7] David Botzer and OpherEtzion, "Tuning of the Relationships among Rules’ Components in Active Databases Systems", IEEE 2004. | [8] Gaozheng Zhang
A Model for Application-Oriented Database Performance Tuning IEEE 2010. |

