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ABSTRACT Exact expressions for the temperature distribution ,stress and displacement component are obtained in 
Laplace transform domain in the case of a infinite medium with a spherical cavity by using eigen value ap-

proach in the context of the theory of thermoelasticity with two relaxation time parameters. The surface of the spherical 
cavity is stress free and subjected to harmonically varying heat. A numerical approach is implemented for the inversion of 
Laplace transform in order to obtain the solution in physical domain. Finally numerical computations of the stress and tem-
perature have been done and represented graphically.Indian Journal of Applied Research

Website: www.theglobaljournals.com (ISSN 2249-555X) 
INTRODUCTION 

The classical theory of thermoelasticity is 
based on Fourier's law of heat conduction which 
predicts an infinite speed of propagation of heat.This 
is physically impossible and many theories have been 
proposed to eliminate this paradox. Lord and 
Shulman [7] employed a modified version of the 
Fourier's law of heat conduction and deduced a 
thermoelasticity known as Generalized theory of 
thermoelasticity with one relaxation time parameter. 
Green and Lindsay [5] presented a theory of 
thermoelasticity with certain special features that 
contrast with the prevoius theory having a thermal 
relaxation time parameter. In this theory Fourier law 
of heat conduction is unchanged whereas the 
classical energy equation  and strees – strain – 
temperature    relations are modified. Two relaxation 
time parameters appear in the governing equations 
in place of one relaxation time paramerter in Lord 
and Shulman's theory. In both the theories the 
conventional Fourier law of heat conduction has 
been modified to a hyperbolic type of equation 
which along with the equation of motion of 
thermoelasticity(which are hyperbolic type) are 
considered for the solution of the problem. Both the 
theories ensure finite speed of propagation of waves 
and eliminate automatically the paradox of infinite 
speed of propagation inherent in both the uncoupled 
and coupled theories of thermoelasticity, vide, 
Chandrasekharaiah et al [3]. Using the Green-
Lindsay's theory, Lahiri and Kar [6] considered a 
problem of Generalized thermoelastic interactions in 
an unbounded body with spherical cavity.   

 In dealing with coupled or generalized 
thermoelastic problems, the solution procedure is 
usually to choose a suitable thermoelastic potential 
function, but this approach has certain limitations as 
discussed in Bahar and Hetnarski [1]. Here we prefer 
to adopt the eigenvalue approach of Das et al [4] for 
the solution of the such type of problem. In this 
paper we consider the thermoelastic infinite medium 
with a spherical cavity within the context of the 
theory of thermoelasticity with two relaxation times. 
The medium descibed above is considered to be 
quiescent and the surface of the cavity is stress free 
and subjected to hamonically varying heat. Laplace 
transform have used in the basic equations of 
thermoelasticity and finally the resulting equations 
are written in the form of a Vector-Matrix 
differential equation which is then solved by 
eigenvalue approach. Finally numerical computations 

of the stresses and temperature have been made 
and presented graphically (for different values of 
time t and angular fequencies).

BASIC EQUATIONS AND FORMULATION 

  Let us consider a perfectly conducting 
infinite solid with a spherical cavity occupies the 
region ∞≤ <ra  of an isotropic homogeneous 
medium and analyse the thermoelastic interactions 
that are spherically symmetric. Then the 
displacement components have the form 

0==,),(= φθ uutruur  and the three principal 

stresses in the radial , cross radial and transverse 

directions are θθσσ ,rr  and φφσ  respectively. The 

medium describe above is considered to be quicent 
and surface of the cavity is subjected to harmonically 
heat and stress free described mathematically as 
follows: 

,cos=|),(=)( 0= ttrtF ar ωθθ            (1) 

               0,=),( tarrσ                                          (2)  

 Where 
0θ  is constant and ω  is the angular 

frequency of the thermal vibration. Thus )(tF  is a 

thermal shock for 0=ω .

  In the case of spherical symmetry the 
equation of motion in the radial direction and the 
energy equation for the Green-Lindsay theory in the 
absence of external forces or heat sources inside the 
region are given by Green et al [5] 
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 and 2∇  is the one-dimensional Laplace operator in 
spherical polar coordinates and given by 

rrr ∂
∂

+
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2= 2

2
2 . The constitutive relation for the 

stresses can be written as [5] 
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After introducing the non-dimensional 
variables
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equations (3), (4), (6) and (7) take the following form 
, where the asterisks are dropped for convenience, 
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FORMULATION OF A VECTOR-MATRIX 
DIFFERENTIAL EQUATION 

We now apply Laplace transform to the equations     
( 9 ) we get,  

dr
dpcupuL θν )(1=][ 2 ++

           
(13)

and  again L.T. to ( 10 ), after differentiating w. r. to r 
and using (13), equation (10) takes the form  
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 Equations (14) and (15) can be written in the form of 
a Vector-Matrix differential equation as 

                VAVL ~~=~
                            (16)

 where 
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SOLUTION OF THE VECTOR-MATRIX EQUATION

To solve the equation (16), we substitute 

),()(~=~ γωγ rXV                      (18)

 where γ  is a scalar, X~  is a vector independent of 

r  and ),( γω r  is a non-trivial solution of the scalar 

differential equation 

ωγω 2=L                           (19)

 The solution of the above equation can be written as 

 rr e
r

e
r

γγ γω −− +2

1=
                

(20)

 Using (18) and (19) in (16) and simplifying the result, 
we obtain the algebraic eigenvalue problem 

   )(~=)(~~ 2 γγγ XXA                (21)
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 where )(~ γX  is the eigenvector corresponding to 

the eigenvalue 2γ . The characteristic equation 

corresponding the matrix A~  can be written as 

0=)()( 211222112211
24 cccccc −++−γγ     (22)

 The roots of the characteristic equation (22) are of 
the form 2

1= γγ  and 2
2= γγ

where, 
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 The eigenvectors )( 2
jX γ , j= 1, 2 corresponding to 

the eigenvalues 2
jγ , j = 1, 2 can be calculated as 
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 So, the solution of (20) can be written as 
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 where the constants A  and B  are to be 
determined from the boundary conditions.  Taking 
Laplace transform of (11) and using (25)  we get 
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 After solving the problem, the expressions for the 
quantities u ,θ  and σ  in Laplace transform domain 
may be written in the following form : 
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 and )( pF  is the Laplace transform of )(tF .

Taking the Laplace transform of (1) , we get 
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NUMERICAL SOLUTION 

  The Laplace inversion of the expressions 
for the displacement ,temperature and stress in the 
physical domain are very complex and we prefer to 
develop an efficient computer software for the 
purpose of inversion of Laplace transforms. The 
inversion of Laplace transform is followed by the 
method of Bellman [2] and choose a time span by 
nine values of time ti i = 1 to 9 at which u ,θ  and σ  
have been determined from the negative of the 
logarithms of the roots of shifted Legendre 
polynomial of degree nine.   
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NUMERICAL RESULTS AND ANALYSIS 

  The copper material was chosen for the purpose of 
numerical calculations, vide, Sherief et al. [8] for 
which 

0.025==and,3.5=,0.0168= 2 ντβε  
Also we take 0,1.0,1.5=1.0,= ωa  . The results 

for temperature and stresses are shown in figures 1 
to 4 respectively with wide range of non dimensional 
distance r  from 1.0 to 3.0 and non dimensional time 
t  = 0.086, 0.412 & 0.693 with different values 
angular frequency of thermal vibration ω  = (0.0, 
1.0, 1.5) . We can see the significant effect of angular 
frequency of thermal vibration ω  on all the studied 
field. It is observed from the Figures 1 to 4 that 

1. the absolute value of temperature and stresses 
decrease as value of r, t & ω  increase;   

2. The value of temperature almost tends to zero 
when 3>r ;  

3. The value of stresses almost tend to zero when 

4>t ;  
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Fig. 1 : Distribution of temperature for different values of omega & time
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Fig.2: Distribution of temperature at r = 2.0
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Fig. 3 : Distribution of stresses for different values omega & time
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4. Temperature and stresses attain its maximum 

value (absolute) when 0.0=ω  i.e. the case of 
thermal shock problem.  

CONCLUSION

We considered a perfectly conducting 
elastic isotropic homogeneous infinite body with 
spherical cavity in the context of generalized 
thermoelasticity theory (G-L model). The effect of 
the angular frequency of thermal vibration on the 
studied fields are very significant.
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