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INTRODUCTION 

Time series modeling holds a great promise as a tool 
for studying network traffic. However, traditional 
models can only capture short-range dependence; for 
examples, Poisson process, Markov processes, AR, 
MA, ARMA and ARIMA processes [1].Therefore, 
models are required to describe both long range and 
short-range dependence simultaneously. We consider 
F-ARIMA (p,d,q) (fractional autoregressive integrated 
moving average) model as one of good models with 
this capability. This paper studied the F-ARIMA
models in its implementation detail. We provide a 
procedure to fit a F-ARIMA model to the actual traffic 
trace, as well as a method to generate a F-ARIMA
process with given parameters. We use the techniques 
of backward prediction, fractional differencing and a 
combination of rough estimation and accurate 
estimation to provide guidelines for simplifying the F-
ARIMA model fitting procedure, in order for us to 
reduce the time of traffic modeling.

METHODOLOGY

A time series is a set of values represented by a linear 
combination of independent random variable

( )ntyt ...,3,2,1= , where index t indicates the 

intervals of time. For seasonal time series data, the 

direct scale of time is not always necessary to develop 
the model. Any mean difference of the series or 
logarithmic transformation of data can be used to 
develop the model. The development of the model 
involves two basic tasks: (a) identifying the nature of 
the demand represented by the sequence of 
observation, and (b) predicting future demands of the 
time series. To achieve the first goal, the following are 
the steps considered: First, identify the pattern of 
observed time t series data, and then the parameters of 
the model are estimated. The second goal is achieved 
by extrapolating the model to predict the future 
demand. In a given time series the following can be 
recognized as: A long-term component of variability 
termed as trend represents the pattern of the series, A 
short-term component, whose shape occurs 
periodically at intervals of s lags of the index variable, 
is known as seasonality.

The theory of time series analysis has been developed 
as a set of linear operators. According to Box and 
Jenkins (1970), a highly useful operator in time series 
theory is the lag or backshift linear operator (B) to 
eliminate the linear or seasonal trend.
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The theory of time series analysis has been developed 
as a set of linear operators. According to Box and 
Jenkins (1970), a highly useful operator in time series 
theory is the lag or backshift linear operator (B) to 
eliminate the linear or seasonal trend.

Difference Operator to Remove the Increasing 
Trend

In time-series analysis, the lag or backshift linear 
operator (B) is used to eliminate the linear trend. If the 
operator B makes tBZ = 1−tZ , which shifts 
backward in time by one period, B is called the 1st 
order delay operator. For example, BZ25= Z24. The 
double application of lag operator is indicated by B2. 
Applying the lag operator twice to a series, the result is 
given by

( ) 11 −− == ttt ZBZBZB

Definition: The k-th order delay operator is defined as 

ktt
k ZZB −=

Therefore, any integer k is written as ktt
k ZZB −= . 

Using the back operator from Definition 1, the 
Equation (2) can be rewritten as

( ) ttptpttt ZBZZZZ φεφφφ ==−−+= −−− ...2211

The autoregressive and moving average components 
can be combined in an autoregressive Moving average 
(ARMA) (p, q) model as

qtqtttptpttt ZZZZ −−−−−− −−−−++++= εθεθεθεφφφ ...... 22112211
The lag operator used in the above equation is

( ) t
q

qt
q
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21
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21

( ) ( ) tt BZB εθφ =                                                                      

Once linear trends of time series are removed, the 
periodic trends are eliminated as following. The 
analysis of a series begins by evaluating the long and 
short-term periodic components, which are essential to 
define the regular structure of the series. The trend 
components are evaluated by fitting a regular function. 
According to Box and Jenkins (1970), the seasonal 
component is estimated by a seasonal decomposition 
procedure, which calculates a seasonal index based on 
the ratio of the observed values to the moving average. 
In the final stage of series modeling, both the trend and 
the seasonal component are integrated in the ARMA 
(p, q) process. For the trend, such integration is 
obtained by using the difference linear operator    

B−=∇ 1 , ( ) .1 tt YBY −=∇ A single application of 

the ∇ operator transforms the data to a linearly 

increasing trend, and repeated use of the ∇ operator 

for d times ( )d∇ transforms the trend to stationary 
which can be fitted by a d-order polynomial. 
Stationary series Zt obtained after the dth difference 

( )d∇ of Yt, which is given by

( ) t
d

t
d

t YBYZ −=∇= 1

The combination of ∇ operator in Equation (6) and 
the ARMA (p, q) process results in an ARIMA (p, d, 
q) model. Again, ARIMA can be used for the seasonal 
component of s lag period, by using both correlations 
between Zt and Zt-s values and those between the 
corresponding residuals εt and εt-s. A seasonal 
ARIMA model is an ARIMA (p, d, q) model Whose 
residuals εt are further modeled by an ARIMA (P, D, 
Q)s. The operators of a seasonal ARIMA model is 
defined as (p, d, q)x(P,D,Q)s. 

F-ARIMA MODEL IDENTIFICATION

ARIMA model is estimated only after transforming the 
variable for forecasting into a stationary series. The 
stationary series is the one whose values vary over 
time only around a constant mean and constant 
variance. The stationary of data series after various 
differencing is shown in Figure 1.

Figure 1: Actual Rubber Production Data Series

Figure 1indicates a strong periodic seasonal pattern 
and increasing trend. This appears to be non-
stationary. After differencing the series, the newly 
constructed variable is Zt, which is

( ) ( )DdDd
t BBZ −−=∇∇= 11 . Thus, Zt   is 

determined after differencing the data, which is

( ) ( )13121 −−− −−−= ttttt tyyyZ
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The next part of this step is to identify the values of p
and q, which are the AR(p) and MA(q) components for 
both seasonal and non-seasonal series. The ACF and 
Partial ACF show that the order of p and q can at the 
most be one. Two goodness of fit statistics are most 
commonly used for model selection AIC and SBC.
The AIC and BIC is determined based on a likelihood 
function. Several (seven) tentative ARIMA models are 
tested for the data series and the corresponding AIC 
values for the models are shown in Table 1.

TABLE -1
AIC VALUE FOR VARIOUS F-ARIMA 

MODELS
Model ARIMA (p, d, q) *(P, D, 

Q)12

AIC

1 (1, 1, 1) (0, 1, 0) 5500.64

2 (1, 1, 1) (0, 1, 1) 5476.98

3 (1, 1, 1) (2, 1, 1) 5443.99

4 (1, 1, 1) (1, 1, 1) 5442

5 (2, 1, 2) (1, 1, 1) 5425.62

6 (2, 1, 2) (2, 1, 1) 5427.6

7 (1, 1, 1) (1, 1, 0) 5473.08

The models that have the lowest AIC value are F-
ARIMA (2,1,2) (1,1,1)12 and (2,1,2) (2,1,1)12. Since two 
models are identified, the most suitable model is 
selected by checking the residuals of both models and 
selected the one with the most significant residuals. 
The AIC values residual test and the estimation of 
model parameters are performed by the R package. 
The results indicates that F-ARIMA (2,1,2) (1,1,1)12 is 
a significantly better model. 

Parameters Estimation of F-ARIMA Model

Once a suitable F-ARIMA (p, d, q) × (P, D, Q)12

structure is identified, the second step is the parameter 
estimation or fitting stage. The parameters are 
estimated by the maximum likelihood method. It is 
also important to check that the parameters contained 
in the model are significant. Both the moving average 
and the autoregressive parameters have significant t 
values. The subsequent step after the parameter 
estimation is the Diagnostic Checking or model 
verification. The Box and Jenkins (1970) estimation 
process for seasonal F-ARIMA model is the forms of 

ACF and PACF with differencing of data series and 
after first and seasonal differencing of the data series 
are shown in Figure 2 and Figure 3.

Figure 2: ACF of Seasonal differenced production data

Figure 3: PACF of Seasonal differenced 
production data

DIAGNOSTIC CHECKING AND MODEL 
VALIDATION

The model verification is concerned with checking the 
residuals of the model to determine if the model 
contains any systematic pattern which can be removed 
to improve on the selected ARIMA model. Although 
the selected model may appear to be the best among a 
number of models considered, it is also necessary to do 
diagnostic checking to verify that the model is 
adequate. Verification of an ARIMA model is tested 
(i) by verifying the ACF of residuals using the chi 
squared test, (ii) by verifying the normal probability 
plot of the residuals. The χ2 tests indicated that the 
hypothesis cannot be rejected and residuals are 
uncorrelated. The ARIMA model (2,1,2) (1,1,1)12 is 
selected to forecast the demand variable, where
autoregressive term p = 2, P = 1 differencing term d =
1, D = 1 (seasonal difference) [that is, (1− B)(1− B12 ) ] 
and moving average term q = 2, Q = 1. The fitted 
model is given by



INDIAN JOURNAL OF APPLIED RESEARCH  X 517 

Volume : 4 | Issue : 7  | July 2014 | ISSN - 2249-555XReseaRch PaPeR

( )( )( )( ) ( )( ) t
s

t eBBBCyBBBBB 2
1

2
21

1212
1

2
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The model has (1 and 2) period differencing, the 
autoregressive factors is the moving average factors is 

)3443.01313.01()1( 22
21 BBBB ++=−− φφ

)8641.00796.01()1( 21 BBBB −−=−− ψψ

and the estimated mean, C = 11906.3414 Transforming 
autoregressive terms and coefficient, the form of 
equation is given by
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Transforming the back operator is given by
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FORECAST RESULTS BY F-ARIMA MODEL

In order to forecast one period ahead, that is, 1+tY is 

Increased by one unit, throughout, as given by

( ) ( ) ( ) ( ) ( ) ( ) µψθβφβφ ++−+−+−−+−+−+= −−−−−+ tttttttt eYYYYYYY 262122122210111 111111

The term 1+te is not known because the expected 

value of future random errors has to be taken as zero. 
For the forecast of the second period onward, the term 

te is also taken as zero as the actual value is not 

known so the forecast errors cannot be found. There 
are 264 data points from January 1991 to December 
2012 used to build the F-ARIMA model. Using 

and9941.0,3297.0,8641.0,0796.0,3443.0,1313.0 2121 −==−=−==−= θβψψφφ μ 
= 119063. In order to forecast for the period 265 is
given by

119063ˆ8641.0ˆ9145.0
ˆ13.0ˆ11351504328.03297.01313.0

263262

241265252251251262264265

+−+
−++−+−=

ee
eeYYYYYY

The value of e265 is not known, so 265ê is replaced by 

zero. The value for 264ê is the difference actual 

production and the forecasted value for the period 264, 
which is 104816.

CONCLUSION

In this paper we have studied how to fit F-ARIMA
models is used to forecast the demand of a natural 
rubber production. It is possible to explore a number of 
interrelated models where the demand process is 
correlated across time. Based on the demand pattern, 
the F-ARIMA (2, 1, 2) (1, 1, 1)12 model was found to 
be the best model for the dataset. F-ARIMA processes 
are much more flexible and capable of simultaneously 
modeling both the long-range and the short-range 
dependent behavior of a time series. Compared with 
other short-range dependent processes such as ARMA 
models, less parameters are required by the F-ARIMA
models for a non stationary stochastic time series such 
as winter apparel, the forecasting model of tern 
becomes complicated. In ARIMA model, forecast 
errors are incorporated to refine the predicted value, so 
the model gradually improves toward the end of the 
time series and provides satisfactory forecasting 
accuracy.
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